{"title":"Role of mitophagy in spinal cord ischemia-reperfusion injury.","authors":"Yanni Duan, Fengguang Yang, Yibao Zhang, Mingtao Zhang, Yujun Shi, Yun Lang, Hongli Sun, Xin Wang, Hongyun Jin, Xuewen Kang","doi":"10.4103/NRR.NRR-D-24-00668","DOIUrl":"10.4103/NRR.NRR-D-24-00668","url":null,"abstract":"<p><p>Spinal cord ischemia-reperfusion injury, a severe form of spinal cord damage, can lead to sensory and motor dysfunction. This injury often occurs after traumatic events, spinal cord surgeries, or thoracoabdominal aortic surgeries. The unpredictable nature of this condition, combined with limited treatment options, poses a significant burden on patients, their families, and society. Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes. In contrast, mitophagy is crucial for degrading damaged mitochondria, thereby supporting neuronal metabolism and energy supply. However, while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury, excessive mitophagy may be detrimental. Therefore, this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury. The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"598-611"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanwen Cao, Li Shang, Deheng Hu, Jianbing Huang, Yu Wang, Ming Li, Yilin Song, Qianzi Yang, Yan Luo, Ying Wang, Xinxia Cai, Juntao Liu
{"title":"Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects.","authors":"Hanwen Cao, Li Shang, Deheng Hu, Jianbing Huang, Yu Wang, Ming Li, Yilin Song, Qianzi Yang, Yan Luo, Ying Wang, Xinxia Cai, Juntao Liu","doi":"10.4103/NRR.NRR-D-24-00836","DOIUrl":"10.4103/NRR.NRR-D-24-00836","url":null,"abstract":"<p><p>Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"491-501"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel insights into non-coding RNAs and their role in hydrocephalus.","authors":"Zhiyue Cui, Jian He, An Li, Junqiang Wang, Yijian Yang, Kaiyue Wang, Zhikun Liu, Qian Ouyang, Zhangjie Su, Pingsheng Hu, Gelei Xiao","doi":"10.4103/NRR.NRR-D-24-00963","DOIUrl":"10.4103/NRR.NRR-D-24-00963","url":null,"abstract":"<p><p>A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"636-647"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Yue, Shang Li, Chon Lok Lei, Huaibin Wan, Zaijun Zhang, Maggie Pui Man Hoi
{"title":"Insights into the transcriptomic heterogeneity of brain endothelial cells in normal aging and Alzheimer's disease.","authors":"Qian Yue, Shang Li, Chon Lok Lei, Huaibin Wan, Zaijun Zhang, Maggie Pui Man Hoi","doi":"10.4103/NRR.NRR-D-24-00695","DOIUrl":"10.4103/NRR.NRR-D-24-00695","url":null,"abstract":"<p><p>Drug development for Alzheimer's disease is extremely challenging, as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-β cascade hypothesis. More recently, advances in the development of Lecanemab, an anti-amyloid-β monoclonal antibody, have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer's disease in the Phase III clinical trial (Clarity Alzheimer's disease). Despite these promising results, side effects such as amyloid-related imaging abnormalities (ARIA) may limit its usage. ARIA can manifest as ARIA-E (cerebral edema or effusions) and ARIA-H (microhemorrhages or superficial siderosis) and is thought to be caused by increased vascular permeability due to inflammatory responses, leading to leakages of blood products and protein-rich fluid into brain parenchyma. Endothelial dysfunction is an early pathological feature of Alzheimer's disease, and the blood-brain barrier becomes increasingly leaky as the disease progresses. In addition, APOE4, the strongest genetic risk factor for Alzheimer's disease, is associated with higher vascular amyloid burden, increased ARIA incidence, and accelerated blood-brain barrier disruptions. These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer's disease. Here, we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer's disease progression.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"569-576"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sox2-overexpressing neural stem cells alleviate ventricular enlargement and neurological dysfunction in posthemorrhagic hydrocephalus.","authors":"Baocheng Gao, Haoxiang Wang, Shuang Hu, Kunhong Zhong, Xiaoyin Liu, Ziang Deng, Yuanyou Li, Aiping Tong, Liangxue Zhou","doi":"10.4103/NRR.NRR-D-24-01491","DOIUrl":"10.4103/NRR.NRR-D-24-01491","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202602000-00045/figure1/v/2025-05-05T160104Z/r/image-tiff Neural stem cells (NSCs) have the potential for self-renewal and multidirectional differentiation, and their transplantation has achieved good efficacy in a variety of diseases. However, only 1%-10% of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus. Sox2 is an important factor for NSCs to maintain proliferation. Therefore, Sox2-overexpressing NSCs (NSCSox2) may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus. In this study, human NSCSox2 was transplanted into a posthemorrhagic hydrocephalus mouse model, and retinoic acid was administered to further promote NSC differentiation. The results showed that NSCSox2 attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function. NSCSox2 also promoted nerve regeneration, inhibited neuroinflammation and promoted M2 polarization (anti-inflammatory phenotype), thereby reducing cerebrospinal fluid secretion in choroid plexus. These findings suggest that NSCSox2 rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"21 2","pages":"769-779"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144037325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intersection of mitochondrial dysfunction and myelination: An overlooked aspect in neurodevelopmental disorders.","authors":"Ariel Nir Sade, Gal Wiener, Boaz Barak","doi":"10.4103/NRR.NRR-D-24-01025","DOIUrl":"10.4103/NRR.NRR-D-24-01025","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"659-660"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cuiling Ji, Lixinbei Sheng, Kaijun Han, Ping Yuan, Wei Li, Lu Chen, Yongyue Gao
{"title":"Microglial intervention in ischemic stroke: Roles and intervention strategies.","authors":"Cuiling Ji, Lixinbei Sheng, Kaijun Han, Ping Yuan, Wei Li, Lu Chen, Yongyue Gao","doi":"10.4103/NRR.NRR-D-24-01166","DOIUrl":"10.4103/NRR.NRR-D-24-01166","url":null,"abstract":"<p><p>Ischemic stroke is a major cause of neurological deficits and high disability rate. As the primary immune cells of the central nervous system, microglia play dual roles in neuroinflammation and tissue repair following a stroke. Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes. This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies. Microglia exhibit a dynamic functional state, transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. This duality is crucial in ischemic stroke, as it maintains a balance between neuroinflammation and tissue repair. Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier, while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration. Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways. These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage. Potential therapeutic agents include natural compounds found in drugs such as minocycline, as well as traditional Chinese medicines. Drugs that target these regulatory mechanisms, such as small molecule inhibitors and components of traditional Chinese medicines, along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics, offer new therapeutic strategies and clinical translational potential for ischemic stroke.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"443-454"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fibrotic scar formation after cerebral ischemic stroke: Targeting the Sonic hedgehog signaling pathway for scar reduction.","authors":"Jun Wen, Hao Tang, Mingfen Tian, Ling Wang, Qinghuan Yang, Yong Zhao, Xuemei Li, Yu Ren, Jiani Wang, Li Zhou, Yongjun Tan, Haiyun Wu, Xinrui Cai, Yilin Wang, Hui Cao, Jianfeng Xu, Qin Yang","doi":"10.4103/NRR.NRR-D-24-00999","DOIUrl":"10.4103/NRR.NRR-D-24-00999","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202602000-00044/figure1/v/2025-05-05T160104Z/r/image-tiff Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment. However, little is known about how fibrosis is induced and regulated after cerebral ischemic injury. Sonic hedgehog signaling participates in fibrosis in the heart, liver, lung, and kidney. Whether Shh signaling modulates fibrotic scar formation after cerebral ischemic stroke and the underlying mechanisms are unclear. In this study, we found that Sonic Hedgehog expression was upregulated in patients with acute ischemic stroke and in a middle cerebral artery occlusion/reperfusion injury rat model. Both Sonic hedgehog and Mitofusin 2 showed increased expression in the middle cerebral artery occlusion rat model and in vitro fibrosis cell model induced by transforming growth factor-beta 1. Activation of the Sonic hedgehog signaling pathway enhanced the expression of phosphorylated Smad 3 and Mitofusin 2 proteins, promoted the formation of fibrotic scars, protected synapses or promoted synaptogenesis, alleviated neurological deficits following middle cerebral artery occlusion/reperfusion injury, reduced cell apoptosis, facilitated the transformation of meninges fibroblasts into myofibroblasts, and enhanced the proliferation and migration of meninges fibroblasts. The Smad3 phosphorylation inhibitor SIS3 reversed the effects induced by Sonic hedgehog signaling pathway activation. Bioinformatics analysis revealed significant correlations between Sonic hedgehog and Smad3, between Sonic hedgehog and Mitofusin 2, and between Smad3 and Mitofusin 2. These findings suggest that Sonic hedgehog signaling may influence Mitofusin 2 expression by regulating Smad3 phosphorylation, thereby modulating the formation of early fibrotic scars following cerebral ischemic stroke and affecting prognosis. The Sonic Hedgehog signaling pathway may serve as a new therapeutic target for stroke treatment.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"756-768"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ABCA5 lipid transporter is associated with a reduced risk of Parkinson's disease.","authors":"Jasmin Galper, Nicolas Dzamko, Woojin Scott Kim","doi":"10.4103/NRR.NRR-D-24-01031","DOIUrl":"10.4103/NRR.NRR-D-24-01031","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"669-670"},"PeriodicalIF":5.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}