神经退行性疾病中的外泌体:治疗潜力和修饰方法。

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-02-01 Epub Date: 2024-10-22 DOI:10.4103/NRR.NRR-D-24-00720
Hongli Chen, Na Li, Yuanhao Cai, Chunyan Ma, Yutong Ye, Xinyu Shi, Jun Guo, Zhibo Han, Yi Liu, Xunbin Wei
{"title":"神经退行性疾病中的外泌体:治疗潜力和修饰方法。","authors":"Hongli Chen, Na Li, Yuanhao Cai, Chunyan Ma, Yutong Ye, Xinyu Shi, Jun Guo, Zhibo Han, Yi Liu, Xunbin Wei","doi":"10.4103/NRR.NRR-D-24-00720","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"21 2","pages":"478-490"},"PeriodicalIF":5.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods.\",\"authors\":\"Hongli Chen, Na Li, Yuanhao Cai, Chunyan Ma, Yutong Ye, Xinyu Shi, Jun Guo, Zhibo Han, Yi Liu, Xunbin Wei\",\"doi\":\"10.4103/NRR.NRR-D-24-00720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\"21 2\",\"pages\":\"478-490\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-00720\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,外泌体作为神经退行性疾病的治疗药物和早期诊断标志物得到了广泛的关注。外泌体很小,可以有效地穿过血脑屏障,使它们能够靶向深部脑病变。最近的研究表明,来自不同细胞类型的外泌体可能通过调节各种炎症细胞因子、mrna和疾病相关蛋白的表达来发挥治疗作用,从而阻止神经退行性疾病的进展,并表现出有益的作用。然而,外泌体由脂质双层膜组成,缺乏识别特定靶细胞的能力。当它们与非特异性细胞相互作用时,这种限制可能导致副作用和毒性。越来越多的证据表明,表面修饰的外泌体具有增强的靶向能力,可以用作靶向药物递送载体,在神经退行性疾病的治疗中显示出有希望的结果。在这篇综述中,我们提供了最新的现有研究概述,旨在设计修饰外泌体的方法并阐明它们在神经退行性疾病中的治疗潜力。我们的研究结果表明,外泌体可以有效地穿过血脑屏障,促进药物传递,也可以作为神经退行性疾病的早期诊断标志物。我们介绍了用于增强外胞体靶向性的策略,包括基因工程、化学修饰(包括共价修饰,如点击化学和代谢工程,以及非共价修饰,如多价静电和疏水相互作用,配体-受体结合,基于适配体的修饰,以及cp05锚定肽的结合)和纳米材料修饰。对这些策略的研究已经证实外泌体对神经退行性疾病具有显著的治疗潜力。然而,外泌体的临床应用仍然存在一些挑战。需要在制备、表征和优化方法以及减少与使用相关的不良反应方面进行改进。此外,外泌体的应用范围和安全性还需要进一步的研究和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods.

In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信