Lingyun Cao, Siyun Chen, Shuping Wang, Ya Zheng, Dongsheng Xu
{"title":"Multi-target neural circuit reconstruction and enhancement in spinal cord injury.","authors":"Lingyun Cao, Siyun Chen, Shuping Wang, Ya Zheng, Dongsheng Xu","doi":"10.4103/NRR.NRR-D-24-00434","DOIUrl":null,"url":null,"abstract":"<p><p>After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury. Notably, neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration, provide neuroprotection, restore neurons, and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract. To improve the effectiveness of these interventions, the implementation of multi-target early interventional neuromodulation strategies, such as electrical and magnetic stimulation, is recommended to enhance functional recovery across different phases of nerve injury. This review concisely outlines the challenges encountered following spinal cord injury, synthesizes existing neurostimulation techniques while emphasizing neuroprotection, repair, and regeneration of impaired connections, and advocates for multi-targeted, task-oriented, and timely interventions.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"957-971"},"PeriodicalIF":5.9000,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00434","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury. Notably, neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration, provide neuroprotection, restore neurons, and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract. To improve the effectiveness of these interventions, the implementation of multi-target early interventional neuromodulation strategies, such as electrical and magnetic stimulation, is recommended to enhance functional recovery across different phases of nerve injury. This review concisely outlines the challenges encountered following spinal cord injury, synthesizes existing neurostimulation techniques while emphasizing neuroprotection, repair, and regeneration of impaired connections, and advocates for multi-targeted, task-oriented, and timely interventions.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.