Pericyte-glial cell interactions: Insights into brain health and disease.

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-04-01 Epub Date: 2025-06-19 DOI:10.4103/NRR.NRR-D-24-01472
Ali Sepehrinezhad, Ali Gorji
{"title":"Pericyte-glial cell interactions: Insights into brain health and disease.","authors":"Ali Sepehrinezhad, Ali Gorji","doi":"10.4103/NRR.NRR-D-24-01472","DOIUrl":null,"url":null,"abstract":"<p><p>Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, maturation, and maintenance of the central nervous system. An expanding body of studies has revealed that pericytes establish carefully regulated interactions with oligodendrocytes, microglia, and astrocytes. These communications govern numerous critical brain processes, including angiogenesis, neurovascular unit homeostasis, blood-brain barrier integrity, cerebral blood flow regulation, and immune response initiation. Glial cells and pericytes participate in dynamic and reciprocal interactions, with each influencing and adjusting the functionality of the other. Pericytes have the ability to control astrocyte polarization, trigger differentiation of oligodendrocyte precursor cells, and initiate immunological responses in microglia. Various neurological disorders that compromise the integrity of the blood-brain barrier can disrupt these communications, impair waste clearance, and hinder cerebral blood circulation, contributing to neuroinflammation. In the context of neurodegeneration, these disruptions exacerbate pathological processes, such as neuronal damage, synaptic dysfunction, and impaired tissue repair. This article explores the complex interactions between pericytes and various glial cells in both healthy and pathological states of the central nervous system. It highlights their essential roles in neurovascular function and disease progression, providing important insights that may enhance our understanding of the molecular mechanisms underlying these interactions and guide potential therapeutic strategies for neurodegenerative disorders in future research.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1253-1263"},"PeriodicalIF":5.9000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, maturation, and maintenance of the central nervous system. An expanding body of studies has revealed that pericytes establish carefully regulated interactions with oligodendrocytes, microglia, and astrocytes. These communications govern numerous critical brain processes, including angiogenesis, neurovascular unit homeostasis, blood-brain barrier integrity, cerebral blood flow regulation, and immune response initiation. Glial cells and pericytes participate in dynamic and reciprocal interactions, with each influencing and adjusting the functionality of the other. Pericytes have the ability to control astrocyte polarization, trigger differentiation of oligodendrocyte precursor cells, and initiate immunological responses in microglia. Various neurological disorders that compromise the integrity of the blood-brain barrier can disrupt these communications, impair waste clearance, and hinder cerebral blood circulation, contributing to neuroinflammation. In the context of neurodegeneration, these disruptions exacerbate pathological processes, such as neuronal damage, synaptic dysfunction, and impaired tissue repair. This article explores the complex interactions between pericytes and various glial cells in both healthy and pathological states of the central nervous system. It highlights their essential roles in neurovascular function and disease progression, providing important insights that may enhance our understanding of the molecular mechanisms underlying these interactions and guide potential therapeutic strategies for neurodegenerative disorders in future research.

周细胞-神经胶质细胞相互作用:对大脑健康和疾病的洞察。
摘要:周细胞是覆盖在毛细血管内皮细胞外的中枢神经系统的多功能附壁细胞。周细胞在神经系统发育中起着至关重要的作用,对中枢神经系统的形成、成熟和维持具有重要影响。越来越多的研究表明,周细胞与少突胶质细胞、小胶质细胞和星形胶质细胞建立了精心调节的相互作用。这些通讯控制着许多关键的脑过程,包括血管生成、神经血管单位稳态、血脑屏障完整性、脑血流调节和免疫反应启动。胶质细胞和周细胞参与动态和互惠的相互作用,相互影响和调节对方的功能。周细胞具有控制星形胶质细胞极化、触发少突胶质细胞前体细胞分化和启动小胶质细胞免疫应答的能力。损害血脑屏障完整性的各种神经系统疾病可破坏这些通信,损害废物清除,阻碍脑血循环,导致神经炎症。在神经变性的情况下,这些破坏加剧了病理过程,如神经元损伤、突触功能障碍和组织修复受损。本文探讨了在中枢神经系统的健康和病理状态下,周细胞和各种胶质细胞之间的复杂相互作用。它强调了它们在神经血管功能和疾病进展中的重要作用,提供了重要的见解,可以增强我们对这些相互作用的分子机制的理解,并指导未来研究中神经退行性疾病的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信