{"title":"视网膜退行性疾病的损伤和修复:通过临床翻译的分子基础。","authors":"Ziting Zhang, Junfeng Ma, Wahid Shah, Xin Quan, Tao Ding, Yuan Gao","doi":"10.4103/NRR.NRR-D-24-01016","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal ganglion cells are the bridging neurons between the eye and the central nervous system, transmitting visual signals to the brain. The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases, including glaucoma, ischemic optic neuropathy, diabetic neuropathy, and optic neuritis. In mammals, injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury. Additionally, these cells exhibit limited regenerative ability, ultimately contributing to vision impairment and potentially leading to blindness. Currently, the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery; however, this approach cannot halt the effect of retinal ganglion cell loss on visual function. This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells. As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens, we can explore new treatment strategies, such as cell transplantation, which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1383-1395"},"PeriodicalIF":6.7000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage and repair in retinal degenerative diseases: Molecular basis through clinical translation.\",\"authors\":\"Ziting Zhang, Junfeng Ma, Wahid Shah, Xin Quan, Tao Ding, Yuan Gao\",\"doi\":\"10.4103/NRR.NRR-D-24-01016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal ganglion cells are the bridging neurons between the eye and the central nervous system, transmitting visual signals to the brain. The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases, including glaucoma, ischemic optic neuropathy, diabetic neuropathy, and optic neuritis. In mammals, injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury. Additionally, these cells exhibit limited regenerative ability, ultimately contributing to vision impairment and potentially leading to blindness. Currently, the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery; however, this approach cannot halt the effect of retinal ganglion cell loss on visual function. This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells. As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens, we can explore new treatment strategies, such as cell transplantation, which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"1383-1395\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2026-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Damage and repair in retinal degenerative diseases: Molecular basis through clinical translation.
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system, transmitting visual signals to the brain. The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases, including glaucoma, ischemic optic neuropathy, diabetic neuropathy, and optic neuritis. In mammals, injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury. Additionally, these cells exhibit limited regenerative ability, ultimately contributing to vision impairment and potentially leading to blindness. Currently, the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery; however, this approach cannot halt the effect of retinal ganglion cell loss on visual function. This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells. As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens, we can explore new treatment strategies, such as cell transplantation, which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.