Damage and repair in retinal degenerative diseases: Molecular basis through clinical translation.

IF 6.7 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-04-01 Epub Date: 2025-02-24 DOI:10.4103/NRR.NRR-D-24-01016
Ziting Zhang, Junfeng Ma, Wahid Shah, Xin Quan, Tao Ding, Yuan Gao
{"title":"Damage and repair in retinal degenerative diseases: Molecular basis through clinical translation.","authors":"Ziting Zhang, Junfeng Ma, Wahid Shah, Xin Quan, Tao Ding, Yuan Gao","doi":"10.4103/NRR.NRR-D-24-01016","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal ganglion cells are the bridging neurons between the eye and the central nervous system, transmitting visual signals to the brain. The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases, including glaucoma, ischemic optic neuropathy, diabetic neuropathy, and optic neuritis. In mammals, injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury. Additionally, these cells exhibit limited regenerative ability, ultimately contributing to vision impairment and potentially leading to blindness. Currently, the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery; however, this approach cannot halt the effect of retinal ganglion cell loss on visual function. This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells. As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens, we can explore new treatment strategies, such as cell transplantation, which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1383-1395"},"PeriodicalIF":6.7000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal ganglion cells are the bridging neurons between the eye and the central nervous system, transmitting visual signals to the brain. The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases, including glaucoma, ischemic optic neuropathy, diabetic neuropathy, and optic neuritis. In mammals, injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury. Additionally, these cells exhibit limited regenerative ability, ultimately contributing to vision impairment and potentially leading to blindness. Currently, the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery; however, this approach cannot halt the effect of retinal ganglion cell loss on visual function. This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells. As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens, we can explore new treatment strategies, such as cell transplantation, which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.

视网膜退行性疾病的损伤和修复:通过临床翻译的分子基础。
摘要:视网膜神经节细胞是连接眼睛和中枢神经系统的桥梁神经元,将视觉信号传递到大脑。视网膜神经节细胞的损伤和丧失是几种视网膜退行性疾病的主要病理改变,包括青光眼、缺血性视神经病变、糖尿病性神经病变和视神经炎。在哺乳动物中,受伤的视网膜神经节细胞缺乏再生能力,并在受伤后几天内发生凋亡细胞死亡。此外,这些细胞表现出有限的再生能力,最终导致视力障碍并可能导致失明。目前临床上唯一有效的青光眼治疗方法是通过药物或手术降低眼压,防止视力丧失;然而,这种方法不能阻止视网膜神经节细胞丧失对视觉功能的影响。本文综述了视网膜退行性疾病中视网膜神经节细胞变性的机制,并进一步探讨了视网膜神经节细胞再生的细胞替代疗法的现状和潜力。随着我们对视网膜神经节细胞变性复杂过程了解的加深,我们可以探索新的治疗策略,如细胞移植,这可能为减轻视网膜退行性疾病对视力的影响提供更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信