生物学最新文献

筛选
英文 中文
Is uric acid a true antioxidant? Identification of uric acid oxidation products and their biological effects. 尿酸是真正的抗氧化剂吗?尿酸氧化产物的鉴定及其生物学效应。
IF 5.2 2区 生物学
Redox Report Pub Date : 2025-12-01 Epub Date: 2025-05-25 DOI: 10.1080/13510002.2025.2498105
Mikaela Peglow Pinz, Isadora Medeiros, Larissa Anastácio da Costa Carvalho, Flavia Carla Meotti
{"title":"Is uric acid a true antioxidant? Identification of uric acid oxidation products and their biological effects.","authors":"Mikaela Peglow Pinz, Isadora Medeiros, Larissa Anastácio da Costa Carvalho, Flavia Carla Meotti","doi":"10.1080/13510002.2025.2498105","DOIUrl":"10.1080/13510002.2025.2498105","url":null,"abstract":"<p><p>Uric acid (UA), the final product of purine metabolism in humans, exhibits a dual role as an anti or pro-oxidant, depending on the microenvironment. The two-electron oxidation of UA by biological oxidants can neutralize such harmful molecules. Additionally, UA chelates metals and can activate adaptive response against oxidation. However, some products of the reaction between UA and oxidants are not inert and, therefore, do not confer the anticipated antioxidant protection. A direct pro-oxidant effect is favoured in the one-electron oxidation of UA by heme-peroxidases yielding free radical intermediates that can initiate or propagate a radical-chain reaction. Additionally, an indirect pro-oxidant effect has been proposed by eliciting the expression or activation of enzymes that catalyse oxidant production, e.g. NADPH oxidase (NOX). This review brings together fundamental concepts and the molecular mechanisms of the redox reactions involving UA. The signature metabolites from these reactions are discussed to give valuable insights on whether these intermediates are being formed and what role they may play in disease pathogenesis. It proposes that, through identifying specific products, it may be possible to elucidate whether a harmful or protective action is linked to downstream bioactivities.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2498105"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lasting metabolic impairment in the failing heart: epigenetic memories at play. 衰竭心脏的长期代谢损伤:表观遗传记忆在起作用。
IF 2.9 3区 生物学
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-06-10 DOI: 10.1080/15592294.2025.2515430
Sarah Costantino, Francesco Paneni
{"title":"Long-lasting metabolic impairment in the failing heart: epigenetic memories at play.","authors":"Sarah Costantino, Francesco Paneni","doi":"10.1080/15592294.2025.2515430","DOIUrl":"10.1080/15592294.2025.2515430","url":null,"abstract":"<p><p>Understanding the factors involved in myocardial recovery after unloading is of utmost importance to unveil new therapies in patients with heart failure (HF). Lack of myocardial recovery might be explained by long-lasting molecular alterations which persist despite normalization of cardiac stress. In this issue of Epigenetics, Roth et al. present an elegant translational study addressing this important aspect at the molecular level. By leveraging a mouse model of reversible transverse aortic constriction (rTAC) and human LV samples from HF patients undergoing LVAD therapy, the authors show that cardiac unloading is associated with a persistent deregulation of transcriptional programmes implicated in mitochondrial respiration, fatty acid and acyl-CoA metabolism, suggesting a long-lasting metabolic deterioration of the failing heart. Of interest, the authors identified several chromatin remodellers (Hdac4, Smarca2, and Brd4) potentially explaining the observed transcriptional alterations. Taken together, these novel findings suggest that 'DNA forgives but does not forget,' thus leaving an epigenetic scar which hampers the recovery of the failing heart after unloading. Disentangling the epigenetic factors involved in such 'transcriptional memory' may set the stage for new interventions resetting the cardiomyocyte transcriptome and myocardial energetics thus fostering a true myocardial recovery in HF.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2515430"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). 多种族动脉粥样硬化研究(MESA)中感知歧视的全表观基因组关联研究。
IF 2.9 3区 生物学
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-01-18 DOI: 10.1080/15592294.2024.2445447
Wei Zhao, Lisha Lin, Kristen M Kelly, Lauren A Opsasnick, Belinda L Needham, Yongmei Liu, Srijan Sen, Jennifer A Smith
{"title":"Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA).","authors":"Wei Zhao, Lisha Lin, Kristen M Kelly, Lauren A Opsasnick, Belinda L Needham, Yongmei Liu, Srijan Sen, Jennifer A Smith","doi":"10.1080/15592294.2024.2445447","DOIUrl":"10.1080/15592294.2024.2445447","url":null,"abstract":"<p><p>Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes <i>NDUFS5</i>, <i>AK1RIN1</i>, <i>NCF4</i> and <i>ADSSL1</i>. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2445447"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional signature of cardiac myocyte recovery in mice and human reveals persistent upregulation of epigenetic factors. 小鼠和人类心肌细胞恢复的转录特征揭示了表观遗传因子的持续上调。
IF 2.9 3区 生物学
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-06-05 DOI: 10.1080/15592294.2025.2506625
Rebekka Roth, Margareta Häckh, Tilman Schnick, Carolin Rommel, Christoph Koentges, Heiko Bugger, Claudia Domisch, Michael R Bristow, Amrut V Ambardekar, Timothy A McKinsey, Ralf Gilsbach, Lutz Hein, Sebastian Preissl
{"title":"Transcriptional signature of cardiac myocyte recovery in mice and human reveals persistent upregulation of epigenetic factors.","authors":"Rebekka Roth, Margareta Häckh, Tilman Schnick, Carolin Rommel, Christoph Koentges, Heiko Bugger, Claudia Domisch, Michael R Bristow, Amrut V Ambardekar, Timothy A McKinsey, Ralf Gilsbach, Lutz Hein, Sebastian Preissl","doi":"10.1080/15592294.2025.2506625","DOIUrl":"10.1080/15592294.2025.2506625","url":null,"abstract":"<p><p>Fibrosis, cardiac remodelling, and inflammation are hallmarks of heart failure. To date, there is no available pharmacological cure for heart failure, but mechanical unloading by implantation of a left ventricular assist device (LVAD) can lead to improved cardiac function in a subset of patients. This study aimed to identify the transcriptional response of left ventricular (LV) cardiac myocytes to mechanical unloading in a mouse model of reversible LV pressure overload and in failing human hearts after LVAD implantation. We found that partial recovery of ventricular dysfunction, LV hypertrophy, and gene expression programmes occurred in mice under reversible transverse aortic constriction (rTAC). Gene expression analysis in cardiac myocytes identified a lasting repression of mitochondrial gene expression resulting in compromised fatty acid oxidation in the mouse model of reversible pressure overload and in human LV samples after LVAD therapy and a persistent upregulation of epigenetic and transcriptional regulators. These findings underpin that recovery from heart failure involves complex gene regulatory networks and that mitochondrial dysfunction remains a challenge even after mechanical unloading. Further studies are needed to investigate the functional role of these factors in reverse remodelling and recovery of failing hearts.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2506625"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual synthesis pathways of scaRNA28 via intronic processing of transformation/transcription domain-associated protein transcripts and a novel independent transcription unit. 通过内含子加工转化/转录结构域相关蛋白转录物和一种新的独立转录单元的scaRNA28的双重合成途径。
IF 3.6 3区 生物学
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-06-09 DOI: 10.1080/15476286.2025.2513133
Keiichi Izumikawa, Tatsuya Shida, Hideaki Ishikawa, Sotaro Miyao, Takayuki Ohga, Masato Taoka, Yuko Nobe, Hiroshi Nakayama, Masami Nagahama
{"title":"Dual synthesis pathways of scaRNA28 via intronic processing of transformation/transcription domain-associated protein transcripts and a novel independent transcription unit.","authors":"Keiichi Izumikawa, Tatsuya Shida, Hideaki Ishikawa, Sotaro Miyao, Takayuki Ohga, Masato Taoka, Yuko Nobe, Hiroshi Nakayama, Masami Nagahama","doi":"10.1080/15476286.2025.2513133","DOIUrl":"10.1080/15476286.2025.2513133","url":null,"abstract":"<p><p>Small Cajal body-specific RNAs (scaRNAs) are noncoding RNAs involved in the maturation of U-rich small nuclear RNAs. Except for a few that have their own transcription units, most scaRNA genes are embedded in introns and are predicted to be transcribed with host genes. Herein, we report that scaRNA28 is the first scaRNA with a dual synthesis pathway, and that this RNA is transcribed in an independent transcription unit (ITU) by RNA polymerase II while located in intron 2 of the transformation/transcription domain-associated protein (TRRAP) gene. We evaluated the scaRNA28 synthesis pathway using minigenes containing exon 2, intron 2, and exon 3 of <i>TRRAP</i>. A minigene with a mutation preventing 5' splicing recognition of the exon 2/intron 2 junction generated scaRNA28, suggesting a pathway processing unspliced transcripts into scaRNA28. Even promoterless minigenes and DNA fragments with regions from exons 2 to 3 of <i>TRRAP</i> showed RNA polymerase II-dependent synthesis of scaRNA28, indicating a novel synthesis pathway involving an ITU. Linker-scanning mutational analysis revealed that the promoter region required for scaRNA28 expression in the ITU is located within 60 bases including exon 2/intron 2 junction of <i>TRRAP</i>, and especially the first two bases of intron 2 region, a putative part of the MYC-binding (E-box) motif, are essential for scaRNA28 expression in the ITU. MYC promotes scaRNA28 expression by binding to the promoter region in the ITU. Our findings demonstrated a novel transcriptional pathway for the synthesis of scaRNA28, the first scaRNA with a dual synthesis pathway.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fucoxanthin alleviates renal aging by regulating the oxidative stress process and the inflammatory response in vitro and in vivo models. 岩藻黄素通过调节体内和体外模型的氧化应激过程和炎症反应来缓解肾脏衰老。
IF 5.2 2区 生物学
Redox Report Pub Date : 2025-12-01 Epub Date: 2025-06-09 DOI: 10.1080/13510002.2025.2511458
Xiaomei Zhang, Weidong Qiang, Yongxin Guo, Jingli Gong, Huan Yu, Di Wu, Pengxiang Tang, Ma Yidan, Huifeng Zhang, Xin Sun
{"title":"Fucoxanthin alleviates renal aging by regulating the oxidative stress process and the inflammatory response <i>in vitro</i> and <i>in vivo</i> models.","authors":"Xiaomei Zhang, Weidong Qiang, Yongxin Guo, Jingli Gong, Huan Yu, Di Wu, Pengxiang Tang, Ma Yidan, Huifeng Zhang, Xin Sun","doi":"10.1080/13510002.2025.2511458","DOIUrl":"10.1080/13510002.2025.2511458","url":null,"abstract":"<p><strong>Objectives: </strong>Many countries in the world are entering society with an aging population. The kidney is one of the most sensitive organs in the body to aging. Kidney function gradually declines with aging. Renal aging is one of the main triggers of CDK. Therefore, many researchers in the field are looking for natural, green and healthy anti-renal-aging bioactive molecules.</p><p><strong>Methods and results: </strong>Western-blot, ELISA and indirect immunofluorescence were performed to evaluate the biological activity of fucoxanthin against renal aging <i>in vitro</i> and <i>in vivo</i> models. First, in the <i>in vitro</i> model, we evaluated the effect of fucoxanthin on renal cell senescence. We found that fucoxanthin could alleviate the kidney cell senescence caused by H<sub>2</sub>O<sub>2</sub> by detecting a series of senescence markers. In the <i>in vivo</i> model, the experimental results showed that fucoxanthin could alleviate the aging of the kidney by Sa-β-gal staining and detection of aging-related marker molecules. Furthermore, we also found that fucoxanthin could alleviate kidney fibrosis.</p><p><strong>Conclusions: </strong>In this study, our results showed that fucoxanthin was able to alleviate renal aging <i>in vivo</i> and <i>in vitro</i> models, suggesting that fucoxanthin could be a functional food to treat and relieve kidney aging.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2511458"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144258910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction: Dihydroartemisinin represses oral squamous cell carcinoma progression through downregulating mitochondrial calcium uniporter. 撤回声明:双氢青蒿素通过下调线粒体钙转运蛋白抑制口腔鳞状细胞癌的进展。
IF 4.2 4区 生物学
Bioengineered Pub Date : 2025-12-01 Epub Date: 2025-06-20 DOI: 10.1080/21655979.2025.2491924
{"title":"Statement of Retraction: Dihydroartemisinin represses oral squamous cell carcinoma progression through downregulating mitochondrial calcium uniporter.","authors":"","doi":"10.1080/21655979.2025.2491924","DOIUrl":"10.1080/21655979.2025.2491924","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491924"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational limitations and future needs to unravel the full potential of 2'-O-methylation and C/D box snoRNAs. 计算限制和未来需要揭示2'- o -甲基化和C/D盒snorna的全部潜力。
IF 3.6 3区 生物学
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-06-29 DOI: 10.1080/15476286.2025.2506712
Christian Ramirez, Elena Perenthaler, Fabio Lauria, Toma Tebaldi, Gabriella Viero
{"title":"Computational limitations and future needs to unravel the full potential of 2'-O-methylation and C/D box snoRNAs.","authors":"Christian Ramirez, Elena Perenthaler, Fabio Lauria, Toma Tebaldi, Gabriella Viero","doi":"10.1080/15476286.2025.2506712","DOIUrl":"10.1080/15476286.2025.2506712","url":null,"abstract":"<p><p>This review evaluates the current state of C/D snoRNA databases and prediction tools in relation to 2'-O-methylation (2'-O-Me). It highlights the limitations of existing resources in accurately annotating and predicting guide snoRNAs, particularly for newly identified 2'-O-Me sites. We emphasize the need for advanced computational approaches specifically tailored to 2'-O-Me to enable the discovery and functional analysis of snoRNAs. Given the growing importance of 2'-O-Me in areas such as cancer epitranscriptomics, ribosome biogenesis, and heterogeneity, existing tools remain inadequate. As 2'-O-Me gains recognition as a potential biomarker and therapeutic target, more sophisticated methods are urgently needed to improve snoRNA annotation and prediction, facilitating biomedical advancements.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative genomic and virulence analyses of a novel sequence type 420 Streptococcus equi subspecies zooepidemicus isolated from donkey. 驴源新序列420型马链球菌亚种的比较基因组学和毒力分析。
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2025-06-29 DOI: 10.1080/21505594.2025.2525964
Yuhui Tian, Yan Su, Xinyu Jiang, Lingling Su, Baojiang Zhang, Fenfen Lv
{"title":"Comparative genomic and virulence analyses of a novel sequence type 420 <i>Streptococcus equi</i> subspecies <i>zooepidemicus</i> isolated from donkey.","authors":"Yuhui Tian, Yan Su, Xinyu Jiang, Lingling Su, Baojiang Zhang, Fenfen Lv","doi":"10.1080/21505594.2025.2525964","DOIUrl":"10.1080/21505594.2025.2525964","url":null,"abstract":"<p><p>The zoonotic pathogen <i>Streptococcus equi</i> subspecies <i>zooepidemicus</i> (SEZ) frequently colonizes equines harmlessly but can occasionally cause disease or cross species barriers. Currently, growing evidence suggests SEZ can lead to severe clinical manifestations in horses and other animals, posing a threat to human and companion animal health. In this study, we sequenced the complete genome of the SEZ strain HT321, a novel sequence type 420 isolated from a donkey with a respiratory infection in China. Subsequently, we conducted comparative genomics, core genome single nucleotide polymorphisms (cgSNP), phylogenetic analysis multilocus sequence typing (MLST), and in vitro pathogenic analysis of this isolate. 118 genes in HT321 were annotated as antibiotic resistance genes (ARGs) and comparative genomics revealed that HT321 contained more lincosamide ARGs compared to other strains. The genomic island of HT321 carried more defensive virulence genes than that in the horse strain JMC111. Furthermore, compared to the reference equine strain JMC111, HT321 exhibited superior antimicrobial resistance and biofilm formation capability but lower pathogenicity. Interestingly, core genome single-nucleotide polymorphism phylogenetic analysis of 51 SEZ strains demonstrated that HT321 clustered with horse and donkey SEZ strains as well as <i>S. canis</i> strains. Notably, MLST analysis of the HT321 and 116 SEZ strains indicated that the HT321 donkey strain was related to SEZ <i>canis</i> isolates. These findings provide valuable insights for understanding, tracking, controlling, and preventing diseases caused by SEZ in donkeys.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2525964"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction. 通过将时间分辨RNA模式整合到miRNA靶标预测中,扩大miR-155-5p的免疫相关靶标组。
IF 3.6 3区 生物学
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-01-11 DOI: 10.1080/15476286.2025.2449775
Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese
{"title":"Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction.","authors":"Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese","doi":"10.1080/15476286.2025.2449775","DOIUrl":"10.1080/15476286.2025.2449775","url":null,"abstract":"<p><p>The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信