Animal BiotechnologyPub Date : 2025-12-01Epub Date: 2024-12-24DOI: 10.1080/10495398.2024.2442351
Ling Jiang, Rong Yi, Huan Chen, Shuwu Wu
{"title":"Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation.","authors":"Ling Jiang, Rong Yi, Huan Chen, Shuwu Wu","doi":"10.1080/10495398.2024.2442351","DOIUrl":"https://doi.org/10.1080/10495398.2024.2442351","url":null,"abstract":"<p><p>The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. <i>In vivo</i> study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD). The results revealed that quercetin ameliorated the aberrant enhancement of body and liver weight. The hepatic histological anomalie induced by MAFLD were also mitigated by quercetin. HFD-induced imbalance in serum LDL, HDL, AST, ALT, TG, and LDH was mitigated by quercetin. Mechanically, we found that quercetin improved lipid metabolism by reducing lipogenesis proteins including ACC, FASN, and SREBP-1c and enhancing β-oxidation proteins including PPARα and CPT1A. <i>In vitro</i> study demonstrated that quercetin regulated hepatic lipid metabolism by targeting SREBP-1c and PPARα. Additionally, quercetin enhanced the antioxidant capacity in HFD-treated mice by downregulating Nrf2 and HO-1 expressions and upregulating SOD and GPX1 expressions. The hyper-activation of inflammation was also restored by quercetin via eliminating the phosphorylation of IκBα and NF-κB p65. Collectively, our observations highlight that quercetin exerts hepatoprotective properties in MAFLD mice by regulating hepatic lipid metabolism, oxidative stress and inflammatory response.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2442351"},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veterinary QuarterlyPub Date : 2025-12-01Epub Date: 2024-12-25DOI: 10.1080/01652176.2024.2440428
Samiullah Khan, Andrea R McWhorter, Nicky-Lee Willson, Daniel M Andrews, Gregory J Underwood, Robert J Moore, Thi Thu Hao Van, Kapil K Chousalkar
{"title":"Vaccine protection of broilers against various doses of wild-type <i>Salmonella</i> Typhimurium and changes in gut microbiota.","authors":"Samiullah Khan, Andrea R McWhorter, Nicky-Lee Willson, Daniel M Andrews, Gregory J Underwood, Robert J Moore, Thi Thu Hao Van, Kapil K Chousalkar","doi":"10.1080/01652176.2024.2440428","DOIUrl":"https://doi.org/10.1080/01652176.2024.2440428","url":null,"abstract":"<p><p>This study evaluated the impact of vaccine diluents (peptone or water) on the protective effects of <i>Salmonella</i> Typhimurium (<i>S</i>. Typhimurium) vaccine. Vaccinated broilers were challenged with different doses of wild-type <i>S</i>. Typhimurium through dust. At the time of cull, vaccine load was highest in caeca and lowest in spleen. Wild-type <i>S</i>. Typhimurium was detectable after 24 hrs only in the vaccinated birds challenged with 108 CFU and positive control. <i>S</i>. Typhimurium load was lower in the organs of the groups challenged with 104 and 106 compared to the 108 CFU group. The caecal microbiota alpha diversity of the vaccinated or vaccinated and challenged chickens differed from the positive and negative control groups. Beta diversity of the positive control clustered separately from all other treatment groups, showing that vaccine caused minimal changes in gut microbiota structure. The vaccinated and/or wild-type challenged chickens showed significantly higher abundance of <i>Anaerostignum</i>, <i>Lachnoclostridium</i>, <i>Intestinimonas</i>, <i>Colidextribacter</i>, <i>Monoglobus</i>, <i>Acetanaerobacterium</i> and <i>Subdoligranulum</i>. Outcomes from this study demonstrate that the vaccine effectively protected broiler chickens from <i>S</i>. Typhimurium infection and helped maintain a more stable gut microbiota structure, reducing the impact of <i>S</i>. Typhimurium on gut health. Vaccine diluent did not affect gut microbiota composition.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-14"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veterinary QuarterlyPub Date : 2025-12-01Epub Date: 2025-01-21DOI: 10.1080/01652176.2025.2454482
Qi An, Yiyang Lv, Yuepeng Li, Zhuo Sun, Xiang Gao, Hongbin Wang
{"title":"Global foot-and-mouth disease risk assessment based on multiple spatial analysis and ecological niche model.","authors":"Qi An, Yiyang Lv, Yuepeng Li, Zhuo Sun, Xiang Gao, Hongbin Wang","doi":"10.1080/01652176.2025.2454482","DOIUrl":"10.1080/01652176.2025.2454482","url":null,"abstract":"<p><p>Foot-and-Mouth Disease is a highly contagious transboundary animal disease. FMD has caused a significant economic impact globally due to direct losses and trade restrictions on animals and animal products. This study utilized multi-distance spatial cluster analysis, kernel density analysis, directional distribution analysis to investigate the spatial distribution patterns of historical FMD epidemics. A multi-algorithm ensemble model considering climatic, geographic, and social factors was developed to predict the suitability area for FMDV, and then risk maps of FMD for each species of livestock were generated in combination with the distribution of livestock. The results show that all serotypes of FMD exhibit significant clustering with a clear tendency toward a directional distribution. Serotypes A and O are widespread in Asia, Europe, Africa, and South America. Serotype Asia 1 is prevalent in Asia. Serotype SAT2 is prevalent in Africa and the Middle East, while Serotypes SAT1 and SAT3 are restricted to Africa. Ecological niche modeling reveals temperature, precipitation, wind speed, and vegetation are important factors influencing the occurrence of FMD. Except for buffaloes, the distribution of high-risk areas for FMD occurrence in other livestock species is quite widespread. The areas primarily include the southern region of North America, the northern, southern, and eastern regions of South America, the Mediterranean region, the eastern region of Europe, the central and southern regions of Africa, the central, eastern, and southern regions of Asia, and parts of Australia. These findings will provide valuable insights into the prevention and control of FMD.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-11"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veterinary QuarterlyPub Date : 2025-12-01Epub Date: 2025-01-20DOI: 10.1080/01652176.2025.2452169
Pan Chen, Mujeeb Ur Rehman, Yanfeng He, Aoyun Li, Fuchun Jian, Longxian Zhang, Shucheng Huang
{"title":"Exploring the interplay between <i>Eimeria</i> spp. infection and the host: understanding the dynamics of gut barrier function.","authors":"Pan Chen, Mujeeb Ur Rehman, Yanfeng He, Aoyun Li, Fuchun Jian, Longxian Zhang, Shucheng Huang","doi":"10.1080/01652176.2025.2452169","DOIUrl":"10.1080/01652176.2025.2452169","url":null,"abstract":"<p><p>Coccidiosis is a global disease caused by protozoans, typically including <i>Eimeria</i> spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated <i>Eimeria</i> spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that <i>Eimeria</i>-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which <i>Eimeria</i> spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of <i>Eimeria</i> spp. into the intestine, which is of paramount importance for maintaining host health.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-22"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food HydrocolloidsPub Date : 2025-05-01Epub Date: 2024-12-10DOI: 10.1016/j.foodhyd.2024.110976
Nosa B Idahagbon, Robert J Nicholas, Alexander Wei
{"title":"Pectin-Cellulose Nanofiber Composites: Biodegradable Materials for Modified Atmosphere Packaging.","authors":"Nosa B Idahagbon, Robert J Nicholas, Alexander Wei","doi":"10.1016/j.foodhyd.2024.110976","DOIUrl":"10.1016/j.foodhyd.2024.110976","url":null,"abstract":"<p><p>Pectin blended with cellulose nanofiber (CNF) sourced from wood pulp has excellent potential for modified atmosphere packaging (MAP), as demonstrated with refrigerated or sliced fruits enclosed in parchment coated with pectin-CNF composites. Addition of sodium borate (NaB) augments the antioxidant capacity of the composite, most likely through the generation of unsaturated pectic acid units. Packaging materials coated with pectin-CNF-NaB composites demonstrate better humidity regulation in refrigerated spaces over a 3-week period relative to uncoated controls (50% less variation), with improved preservation of strawberries as well as a reduction in the oxidative browning of sliced apples. Pectin-CNF films are both biorenewable and biodegradable as confirmed by their extensive decomposition in soil over several weeks, establishing their potential as a sustainable MAP material. Lastly, self-standing films are mechanically robust at 80% RH with tensile strength and toughness as high as 150 MPa and 8.5 MJ/m<sup>2</sup> respectively. These values are on par with other bioplastic composites and support the practical utility of pectin-CNF composites in functional packaging applications.</p>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"162 ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food microbiologyPub Date : 2025-04-01Epub Date: 2024-11-30DOI: 10.1016/j.fm.2024.104698
Xizi Zhang, Wei Chen, Chengtao Wang
{"title":"Regulation of citrinin biosynthesis in Monascus purpureus: Impacts on growth, morphology, and pigments production.","authors":"Xizi Zhang, Wei Chen, Chengtao Wang","doi":"10.1016/j.fm.2024.104698","DOIUrl":"https://doi.org/10.1016/j.fm.2024.104698","url":null,"abstract":"<p><p>Fungal hyphae self-assemble a variety of cellular macrostates, ranging from suspended mycelium to dense pellets, all inextricably linked to their productivity. In this study, using CRISPR/Cas technology, we constructed a ctnA knockout strain (ΔctnA) and an overexpression strain (A2) so as to investigate the effects of interfering with citrinin biosynthesis on the growth, morphology and pigmentation of M.purpureus. Results indicated that deletion of ctnA in M. purpureus RP2 led to increased mycelium length, delayed conidium formation, and a citrinin content of 22% of the wild-type strain. Conversely, ctnA overexpression in strain A2 resulted in delayed mycelial growth, normal conidium formation, and a citrinin content of 120% compared to the wild-type strain, with minimal effects on pigments content. Notably, the ΔctnA strain formed small, tightly structured pellets (mean diameter 1.2 ± 0.06 mm) and exhibited low citrinin content, promoting pigments production. Our findings suggest a complex interplay between citrinin biosynthesis and morphological development, providing insights for optimizing metabolite production in industrial applications.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104698"},"PeriodicalIF":4.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The investigation of the mechanism underlying variations in oxidative stress tolerance of Lacticaseibacillus paracasei resulting from fermentation methods through endogenous CRISPR-Cas9 editing methodology.","authors":"Pengyu Wu, Yutian Zhang, Qiantong Shan, Ziyang Wang, Shuang Cheng, Laiyou Wang, Bingbing Liu, Wenhuan Li, Zhenmin Chen, Jiancheng Luo, Yunxiang Liang","doi":"10.1016/j.fm.2024.104697","DOIUrl":"https://doi.org/10.1016/j.fm.2024.104697","url":null,"abstract":"<p><p>The probiotic effects of lactic acid bacteria make them widely used in human and animal breeding industry. However, the presence of oxidative stress during the production and application process can cause bacterial damage or even death, significantly compromising the functionality of probiotics. Despite its potential for broader application scenarios that could provide a more comprehensive understanding of bacteria's internal adaptation strategies, there is a lack of research investigating oxidative stress from the perspective of culture methods. In this study, the tolerance to oxidative stress was compared between bacteria cultivated through solid-state fermentation (SSF) and liquid-state fermentation (LSF), and the physiological and transcriptional disparities between these two bacterial strains were investigated. Additionally, a novel and efficient gene editing method was developed to elucidate the genetic basis underlying these differences in tolerance. The results demonstrated a significantly higher tolerance to oxidative stress in SSF bacteria compared to LSF bacteria, along with a stronger capacity for maintaining intracellular microenvironment stability and the activity of key metabolic enzymes. It is noteworthy that the bacteria from SSF significantly enhance the transport of carbohydrate substances and facilitate intracellular metabolic flow. Gene editing experiments have confirmed the crucial role of genes glpF and glpO in regulating the glycerol metabolism pathway, which is essential for enhancing the tolerance of bacteria from SSF to oxidative stress. Based on these findings, the mechanism underlying the disparity in oxidative stress tolerance resulting from different culture methods has been summarized. Furthermore, investigation into different culture modes has revealed that moderate oxygen levels during cultivation significantly influence variation in bacterial tolerance to oxidative stress. Importantly, these variations are species-specific and depend on the ecological niche distribution of Lactobacilli. These findings elucidate a novel mechanism by which Lacticaseibacillus paracasei Zhang tolerates oxidative stress, and also suggest that distinct cultivation and processing methods should be tailored based on the specific Lactobacilli groups to achieve optimal application effects in production.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104697"},"PeriodicalIF":4.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species.","authors":"Wendi Zhang, Yunhao Ma, Yong Xie, Xiaoyan Liu, Lijun Tan, Jinsong Zhao, Yongsheng Ni, Zhaoming Wang, Cong Li, Baocai Xu","doi":"10.1016/j.fm.2024.104685","DOIUrl":"https://doi.org/10.1016/j.fm.2024.104685","url":null,"abstract":"<p><p>This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104685"},"PeriodicalIF":4.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food microbiologyPub Date : 2025-04-01Epub Date: 2024-11-27DOI: 10.1016/j.fm.2024.104689
Paloma Toraño, Alba Martín-García, Albert Bordons, Nicolas Rozès, Cristina Reguant
{"title":"Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains.","authors":"Paloma Toraño, Alba Martín-García, Albert Bordons, Nicolas Rozès, Cristina Reguant","doi":"10.1016/j.fm.2024.104689","DOIUrl":"https://doi.org/10.1016/j.fm.2024.104689","url":null,"abstract":"<p><p>Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine. This study explored in model conditions the impact of a commercial mannoprotein extract on MLF dynamics in ten O. oeni strains. The results revealed strain-specific responses in fermentation kinetics and mannoprotein utilization. Mannoprotein addition influenced MLF outcomes, depending on the strain and concentration. The variability in MLF confirmed different technological aptitude of the strains used. The α-mannosidase enzymatic activity was determined and showed higher values in the supernatant than in whole cells. Moreover, α-mannosidase activity varied among strains, suggesting differential regulation in response to fermentation conditions. These findings highlight the importance of understanding mannoprotein interactions with O. oeni for optimizing MLF efficiency and enhancing wine quality. Further research under cellar conditions is needed to evaluate the potential of yeast mannoproteins to promote MLF.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104689"},"PeriodicalIF":4.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food ChemistryPub Date : 2025-04-01Epub Date: 2024-12-26DOI: 10.1016/j.foodchem.2024.142673
Kaj V Sullivan, Katharina Moser, Marta Costas-Rodríguez, Eduardo Bolea-Fernandez, Frank Vanhaecke
{"title":"High-precision Cu isotopic analysis of human dietary Cu sources via multi-collector ICP-mass spectrometry.","authors":"Kaj V Sullivan, Katharina Moser, Marta Costas-Rodríguez, Eduardo Bolea-Fernandez, Frank Vanhaecke","doi":"10.1016/j.foodchem.2024.142673","DOIUrl":"10.1016/j.foodchem.2024.142673","url":null,"abstract":"<p><p>The disruption of Cu homeostasis is associated with the pathogenesis of many diseases and can result in alterations in Cu isotope fractionation. Changes in the Cu isotope ratio (<sup>65</sup>Cu/<sup>63</sup>Cu) of body fluids and tissues have been observed in liver disorders, cancers, and other diseases, displaying diagnostic/prognostic potential. However, it is not entirely clear whether certain physiological or lifestyle factors may also influence the bodily Cu isotopic composition, potentially obfuscating the signature of the pathology. To ascertain whether differences exist between food products, the Cu isotopic composition of 29 significant dietary Cu sources has been determined for the first time. The general enrichment of Cu and its heavy isotope, <sup>65</sup>Cu, in legumes, nuts, and seeds (major Cu sources in plant-based diets) was revealed, suggesting that individuals with plant-based diets may have a bodily Cu isotopic composition offset from that of individuals with omnivorous diets, thus requiring controlling for in study design.</p>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"470 ","pages":"142673"},"PeriodicalIF":8.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}