{"title":"Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng","authors":"","doi":"10.1016/j.jgr.2024.04.004","DOIUrl":"10.1016/j.jgr.2024.04.004","url":null,"abstract":"<div><h3>Background</h3><p>The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of <em>Panax ginseng</em>, the molecular aspects of bud dormancy in this species remain largely unknown.</p></div><div><h3>Methods</h3><p>In this study, the molecular physiological responses of three <em>P. ginseng</em> cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy.</p></div><div><h3>Results</h3><p>Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (<em>PYR</em>s/<em>PYL</em>s), <em>PROTEIN PHOSPHATASE</em> 2Cs (<em>PP2C</em>s), and <em>DELLA</em>s were highly correlated with different dormancy states in three <em>P. ginseng</em> cultivars.</p></div><div><h3>Conclusion</h3><p>This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant <em>P. ginseng</em>.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 511-519"},"PeriodicalIF":6.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000836/pdfft?md5=1c47b5f59fd668282e1b50b0a8a22ad9&pid=1-s2.0-S1226845324000836-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dahee Shim , Yeeun Bak , Han-Gyu Choi , Seunghyun Lee , Sang Chul Park
{"title":"Effects of Panax species and their bioactive components on allergic airway diseases","authors":"Dahee Shim , Yeeun Bak , Han-Gyu Choi , Seunghyun Lee , Sang Chul Park","doi":"10.1016/j.jgr.2024.04.003","DOIUrl":"10.1016/j.jgr.2024.04.003","url":null,"abstract":"<div><p><em>Panax</em> species include <em>Panax ginseng</em> Meyer, <em>Panax quinquefolium</em> L., <em>Panax notoginseng</em>, <em>Panax japonicum</em>, <em>Panax trifolium</em>, and <em>Panax pseudoginseng</em>, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of <em>Panax</em> species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how <em>Panax</em> species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells <em>in vitro</em>. In addition, we highlight the current understanding of the alleviative effects of <em>Panax</em> species and their BCs against AA and AR <em>in vivo</em>. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using <em>Panax</em> species and their BCs.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 354-365"},"PeriodicalIF":6.3,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000824/pdfft?md5=d090cd8faef66fbe31255e05236be1db&pid=1-s2.0-S1226845324000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140771746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyeon Jang , Hyeonjin Lee , Hyeon Woo Kim, Minjae Baek, Sanghyun Jung, Sun Jung Kim
{"title":"Human disease-related long noncoding RNAs: Impact of ginsenosides","authors":"Siyeon Jang , Hyeonjin Lee , Hyeon Woo Kim, Minjae Baek, Sanghyun Jung, Sun Jung Kim","doi":"10.1016/j.jgr.2024.04.002","DOIUrl":"10.1016/j.jgr.2024.04.002","url":null,"abstract":"<div><p>Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA (</p><p>lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 347-353"},"PeriodicalIF":6.3,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000800/pdfft?md5=d927b6ff2df667d06454614691ee6792&pid=1-s2.0-S1226845324000800-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Yee Lee , Sung Dae Kim , Jin-Kyu Park , Won-Jae Lee , Jee Eun Han , Min-Soo Seo , Min-Goo Seo , Seulgi Bae , Dongmi Kwak , Evelyn Saba , Man Hee Rhee
{"title":"Red ginseng extract inhibits lipopolysaccharide-induced platelet–leukocyte aggregates in mice","authors":"Yuan Yee Lee , Sung Dae Kim , Jin-Kyu Park , Won-Jae Lee , Jee Eun Han , Min-Soo Seo , Min-Goo Seo , Seulgi Bae , Dongmi Kwak , Evelyn Saba , Man Hee Rhee","doi":"10.1016/j.jgr.2024.03.009","DOIUrl":"10.1016/j.jgr.2024.03.009","url":null,"abstract":"<div><h3>Background</h3><p>Platelet–leukocyte aggregates (PLAs) play important roles in cardiovascular disease and sepsis. Red ginseng extract (RGE) has been well-studied for its antiplatelet and anti-inflammatory activities. However, the potential inhibitory effects of RGE on PLA have not been investigated.</p></div><div><h3>Methods</h3><p>Six-week-old ICR mice were given oral gavage of RGE for 7 days, followed by an intraperitoneal injection of 15 mg/kg of lipopolysaccharide. Mice were euthanized 24 h later, and blood samples were collected for further analysis. Flow cytometry was utilized to sort populations of PLAs and platelet–neutrophil aggregates (PNAs). By using confocal microscopy, PNAs were validated. Morphological changes in platelets and leukocytes were visualized with scanning electron microscopy. Expressions of tissue factor (TF) and platelet factor 4 (PF4) were investigated using enzyme-linked immunosorbent assay.</p></div><div><h3>Results</h3><p>Populations of activated platelets, PLAs and PNAs, were significantly increased with LPS-induction. Treatment with 200 and 400 mg/kg of RGE decreased platelet activation. Moreover, the populations of PLAs and PNAs were reduced. PNAs were visible in the blood of septic mice, and this was attenuated by treatment with 400 mg/kg of RGE. Morphologically, sepsisinduced platelet activation and fibrin formation in the blood. This was reduced with RGE treatment. Sepsis-induced increase in the plasma levels of TF and PF4 was also reduced with RGE treatment.</p></div><div><h3>Conclusion</h3><p>This study shows that RGE is a potential therapeutic that reduces the activation of platelets and targets PLA and PNA formation. Detailed inhibitory mechanisms of RGE should be studied.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 428-434"},"PeriodicalIF":6.3,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000447/pdfft?md5=94c6c555295c7039d1d014bfad1b3ad7&pid=1-s2.0-S1226845324000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Korean Red Ginseng on the motor performance and ataxia","authors":"Seunghyun Lee , Yeri Won , Manho Kim","doi":"10.1016/j.jgr.2024.03.008","DOIUrl":"10.1016/j.jgr.2024.03.008","url":null,"abstract":"<div><p>This study presents a preliminary exploration into the effect of Korean Red Ginseng (KRG) on the cerebellum in individuals with cerebellar atrophy. Over a three month-long period, nine subjects received a 4.5g of KRG daily, with assessments including the ARS, ADAS-Cog, and FDG-PET/CT scans. Results revealed a notable improvement in ataxia and cognitive function without a significant correlation between them. PET/CT scans and SUVR analyses supported these findings, showing an increase in cerebellar glucose uptake after KRG intake. These outcomes suggest a potential pleiotropic effect of KRG on cerebellar function.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 425-427"},"PeriodicalIF":6.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000435/pdfft?md5=76ecc9ec85af8f692908b3fb5d0705e6&pid=1-s2.0-S1226845324000435-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140401124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myoung-Sook Shin , YoungJoo Lee , Ik-Hyun Cho , Hyun-Jeong Yang
{"title":"Brain plasticity and ginseng","authors":"Myoung-Sook Shin , YoungJoo Lee , Ik-Hyun Cho , Hyun-Jeong Yang","doi":"10.1016/j.jgr.2024.03.007","DOIUrl":"10.1016/j.jgr.2024.03.007","url":null,"abstract":"<div><p>Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 3","pages":"Pages 286-297"},"PeriodicalIF":6.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000423/pdfft?md5=8ffbc76acd7eb9086143d8df53b86ef4&pid=1-s2.0-S1226845324000423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140405813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice","authors":"","doi":"10.1016/j.jgr.2024.03.005","DOIUrl":"10.1016/j.jgr.2024.03.005","url":null,"abstract":"<div><h3>Background</h3><p>Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI.</p></div><div><h3>Methods</h3><p>C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21–P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively.</p></div><div><h3>Results</h3><p>SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage.</p></div><div><h3>Conclusion</h3><p>Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 481-493"},"PeriodicalIF":6.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532400040X/pdfft?md5=055d9b20ea6db0b840443eee79ba49d0&pid=1-s2.0-S122684532400040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140399251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mijin Kim , Bongjun Sur , Thea Villa , Jaesuk Yun , Seung Yeol Nah , Seikwan Oh
{"title":"Corrigendum to “Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2” [J. Ginseng Res. 47 (1) (January 2023) 168]","authors":"Mijin Kim , Bongjun Sur , Thea Villa , Jaesuk Yun , Seung Yeol Nah , Seikwan Oh","doi":"10.1016/j.jgr.2024.03.006","DOIUrl":"10.1016/j.jgr.2024.03.006","url":null,"abstract":"","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 3","pages":"Page 346"},"PeriodicalIF":6.3,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000411/pdfft?md5=db8cd34ac8720915753c92c1c9b040a4&pid=1-s2.0-S1226845324000411-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights","authors":"Tae Hyun Kim","doi":"10.1016/j.jgr.2024.03.002","DOIUrl":"10.1016/j.jgr.2024.03.002","url":null,"abstract":"<div><p>Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 3","pages":"Pages 276-285"},"PeriodicalIF":6.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532400037X/pdfft?md5=0f98fa4bf6ca0a050bbe2420d57e3fd6&pid=1-s2.0-S122684532400037X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140279688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duy-Thuc Nguyen , Min-Hwan Kim , Min-Jun Baek , Nae-Won Kang , Dae-Duk Kim
{"title":"Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides","authors":"Duy-Thuc Nguyen , Min-Hwan Kim , Min-Jun Baek , Nae-Won Kang , Dae-Duk Kim","doi":"10.1016/j.jgr.2024.03.004","DOIUrl":"10.1016/j.jgr.2024.03.004","url":null,"abstract":"<div><h3>Background</h3><p>This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker.</p></div><div><h3>Methods</h3><p>A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and <em>in vitro</em> release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations.</p></div><div><h3>Results</h3><p>PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (−28.6 mV) and a high entrapment efficiency (97.3%). The results of the <em>in vitro</em> release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group.</p></div><div><h3>Conclusion</h3><p>The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 417-424"},"PeriodicalIF":6.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000393/pdfft?md5=55dec7f454bf53319a6a860fd375c787&pid=1-s2.0-S1226845324000393-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140278479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}