Cell Biology International最新文献

筛选
英文 中文
HMGB1 promotes M1 polarization of macrophages and induces COPD inflammation HMGB1 促进巨噬细胞的 M1 极化并诱发慢性阻塞性肺病炎症。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-10-04 DOI: 10.1002/cbin.12252
Qingshuang Mu, Qin Wang, Ye Yang, Ganghua Wei, Hao Wang, Jing Liao, Xinling Yang, Fan Wang
{"title":"HMGB1 promotes M1 polarization of macrophages and induces COPD inflammation","authors":"Qingshuang Mu,&nbsp;Qin Wang,&nbsp;Ye Yang,&nbsp;Ganghua Wei,&nbsp;Hao Wang,&nbsp;Jing Liao,&nbsp;Xinling Yang,&nbsp;Fan Wang","doi":"10.1002/cbin.12252","DOIUrl":"10.1002/cbin.12252","url":null,"abstract":"<p>Chronic obstructive pulmonary disease (COPD) is a pervasive and incapacitating respiratory condition, distinguished by airway inflammation and the remodeling of the lower respiratory tract. Central to its pathogenesis is an intricate inflammatory process, wherein macrophages exert significant regulatory functions, and High mobility group box 1 (HMGB1) emerges as a pivotal inflammatory mediator potentially driving COPD progression. This study explores the hypothesis that HMGB1, within macrophages, modulates COPD through inflammatory mechanisms, focusing on its influence on macrophage polarization. Our investigation uncovered that HMGB1 is upregulated in the context of COPD, associated with an enhanced proinflammatory M1 macrophage polarization induced by cigarette smoke. This polarization is linked to suppressed cell proliferation and induced apoptosis, indicative of HMGB1's role in the disease's inflammatory trajectory. The study further implicates HMGB1 in the activation of the Nuclear factor kappa-B (NF-κB) signaling pathway and chemokine signaling within macrophages, which are likely to amplify the inflammatory response characteristic of COPD. The findings underscore HMGB1's critical involvement in COPD pathogenesis, presenting it as a significant target for therapeutic intervention aimed at modulating macrophage polarization and inflammation.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"79-91"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment 低密度胆固醇与白细胞介素-17 的相互作用在乳腺癌发病和治疗中的作用
IF 3.9 3区 生物学
Cell Biology International Pub Date : 2024-09-24 DOI: 10.1002/cbin.12250
Qingqing Liu, Rongyuan Yang, Dawei Wang, Qing Liu
{"title":"Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment","authors":"Qingqing Liu, Rongyuan Yang, Dawei Wang, Qing Liu","doi":"10.1002/cbin.12250","DOIUrl":"https://doi.org/10.1002/cbin.12250","url":null,"abstract":"Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"5 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EML4-ALK G1202R and EML4-ALK L1196M mutations induce crizotinib resistance in non-small cell lung cancer cells through activating epithelial–mesenchymal transition mediated by MDM2/MEK/ERK signal axis EML4-ALK G1202R和EML4-ALK L1196M突变通过激活MDM2/MEK/ERK信号轴介导的上皮-间质转化,诱导非小细胞肺癌细胞对克唑替尼产生耐药性
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-24 DOI: 10.1002/cbin.12249
Yuying Yang, Huan Yang, Yunhui Gao, Qian Yang, Xinya Zhu, Qianying Miao, Xiaobo Xu, Zengqiang Li, Daiying Zuo
{"title":"EML4-ALK G1202R and EML4-ALK L1196M mutations induce crizotinib resistance in non-small cell lung cancer cells through activating epithelial–mesenchymal transition mediated by MDM2/MEK/ERK signal axis","authors":"Yuying Yang,&nbsp;Huan Yang,&nbsp;Yunhui Gao,&nbsp;Qian Yang,&nbsp;Xinya Zhu,&nbsp;Qianying Miao,&nbsp;Xiaobo Xu,&nbsp;Zengqiang Li,&nbsp;Daiying Zuo","doi":"10.1002/cbin.12249","DOIUrl":"10.1002/cbin.12249","url":null,"abstract":"<p>Crizotinib, as the first-generation of anaplastic lymphoma kinase (ALK) inhibitor, effectively improves the survival time of ALK-positive non-small cell lung cancer (NSCLC) patients. However, its efficacy is severely limited by drug resistance caused by secondary mutations. G1202R and L1196M are classical mutation sites located in ALK kinase domain. They may hinder the binding of ALK inhibitors to the target kinase domain, resulting in drug resistance in patients. However, the exact mechanism of drug resistance mediated by these mutations remains unclear. In this study, we aimed to evaluate how G1202R and L1196M mutations mediate crizotinib resistance. To explore the resistance mechanism, we constructed EML4-ALK G1202R and L1196M mutant cell lines with A549 cells. The results showed that the mutant cells exhibited significant epithelial–mesenchymal transition (EMT) and metastasis compared to control (A549-vector) or wild type (A549-EML4-ALK) cells. Subsequently, it was found that the occurrence of EMT was correlated to the high expression of murine double minute 2 (MDM2) protein and the activation of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in mutant cells. Down-regulation of MDM2 inhibited the activation of MEK/ERK pathway, thus reversed the EMT process and markedly increased the inhibitory effect of crizotinib on the growth of mutant cells. Collectively, resistance of ALK-positive NSCLC cells to crizotinib is induced by G1202R and L1196M mutations through activation of the MDM2/MEK/ERK signalling axis, promoting EMT process and metastasis. These findings suggest that the combination of MDM2 inhibitors and crizotinib could be a potential therapeutic strategy.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"55-67"},"PeriodicalIF":3.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erucic acid increases the potency of cisplatin-induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel 芥酸通过上调 TRPM2 通道增加顺铂诱导的结直肠癌细胞死亡和氧化应激的效力。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-23 DOI: 10.1002/cbin.12248
Ayşenur Nazıroğlu, Ahmet Çarhan, Mustafa Nazıroğlu
{"title":"Erucic acid increases the potency of cisplatin-induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel","authors":"Ayşenur Nazıroğlu,&nbsp;Ahmet Çarhan,&nbsp;Mustafa Nazıroğlu","doi":"10.1002/cbin.12248","DOIUrl":"10.1002/cbin.12248","url":null,"abstract":"<p>Erucic acid (ErA) is a source of omega-9 monounsaturated fatty acids. ErA exhibited antitumor effects by causing apoptosis and oxidative stress in tumor cells, with the exception of the HT-29 human colorectal cancer cell line. The apoptotic and Ca<sup>2+</sup> signaling pathways in tumor cells are triggered when mitochondrial Ca<sup>2+</sup> and Zn<sup>2+</sup> accumulation produce reactive free oxygen species (ROS), which in turn activate TRPM2. ErA-induced ROS and TRPM2 stimulation may augment the anticancer action of cisplatin (CSP). We aimed to study the effects of ErA and CSP incubations on ROS, apoptosis, and cell death in the HT-29 cells by activating TRPM2. The cells were divided into five groups: control, ErA (200 µM for 48 h), CSP (25 µM for 24 h), and ErA + CSP + TRPM2 antagonists (200 µM carvacrol and 25 µM N-(p-amylcinnamoyl)anthranilic acid for 24 h). The TRPM2 antagonists reduced ErA plus CSP-induced increases in H<sub>2</sub>O<sub>2</sub>-induced intracellular free Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>c</sub>) and adenosine diphosphate-ribose-caused TRPM2 currents. ErA and CSP were found to cause apoptosis and cell death by raising the intracellular free Zn<sup>2+</sup> concentration (Zn<sup>2+</sup>]<sub>c</sub>), caspase-3, −8, and −9, mitochondrial membrane dysfunction, and ROS, while lowering reduced glutathione, cell viability, and cell number. The oxidative, apoptotic, and tumor cell death effects of CSP in the cells were enhanced by the increase of ErA-mediated [Ca<sup>2+</sup>]<sub>c</sub> and Zn<sup>2+</sup>]<sub>c</sub> entering mitochondria through the activation of TRPM2. In conclusion, we observed that the combination of ErA and CSP was synergistic via TRPM2 activation for the treatment of HT-29 tumor cells.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1862-1876"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective 表达 Pax6 的神经外胚层和眼干细胞:从发育生物学角度看其作用
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-23 DOI: 10.1002/cbin.12246
Shubhangi More, Sumit Mallick, Sudheer Shenoy P., Bipasha Bose
{"title":"Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective","authors":"Shubhangi More,&nbsp;Sumit Mallick,&nbsp;Sudheer Shenoy P.,&nbsp;Bipasha Bose","doi":"10.1002/cbin.12246","DOIUrl":"10.1002/cbin.12246","url":null,"abstract":"<p>Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1802-1815"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive action of oncomiR in suppressing TP53 signaling pathway in hypoxia-conditioned colon cancer cell line HCT-116 oncomiR抑制低氧条件下结肠癌细胞系HCT-116中TP53信号通路的预测作用
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-16 DOI: 10.1002/cbin.12243
R. Susanti, Muchamad Dafip, Dewi Mustikaningtyas, Agung Putra
{"title":"Predictive action of oncomiR in suppressing TP53 signaling pathway in hypoxia-conditioned colon cancer cell line HCT-116","authors":"R. Susanti,&nbsp;Muchamad Dafip,&nbsp;Dewi Mustikaningtyas,&nbsp;Agung Putra","doi":"10.1002/cbin.12243","DOIUrl":"10.1002/cbin.12243","url":null,"abstract":"<p>Hypoxia-induced heterogeneity in colorectal cancer (CRC) significantly impacts patient survival by promoting chemoresistance. These conditions alter the regulation of miRNAs, key regulators of crucial processes like proliferation, apoptosis, and invasion, leading to tumor progression. Despite their promising potential as diagnostic and therapeutic targets, the underlying mechanisms by which miRNAs influence hypoxia-mediated tumorigenesis remain largely unexplored. This study aims to elucidate the action of miRNAs in HCT-116 colorectal cancer stem cells (CSCs) under hypoxia, providing valuable insights into their role in tumor adaptation and progression. MiRNA expression was determined using Nanostring nCounter, and bioinformatic analysis was performed to explain the molecular pathway. A total of 50 miRNAs were obtained with an average count of ≥ 20 reads for comparative expression analysis. The results showed that hypoxia-affected 36 oncomiRs were increased in HCT-116, and 14 suppressor-miRs were increased in MSCs. The increase in miRNA expression occurred consistently from normoxia to hypoxia and significantly differed between mesenchymal stem cells (MSCs) and HCT-116. Furthermore, miR-16-5p and miR-29a-3p were dominant in regulating the p53 signaling pathway, which is thought to be related to the escape mechanism against hypoxia and maintaining cell proliferation. More research with a genome-transcriptome axis approach is needed to fully understand miRNAs’ role in adapting CRC cells and MSCs to hypoxia. Further research could focus on developing specific biomarkers for diagnosis. In addition, anti-miR can be developed as a therapy to prevent cancer proliferation or inhibit the adaptation of cancer cells to hypoxia.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1891-1905"},"PeriodicalIF":3.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast cancer cell derived exosomes reduces glycolysis of activated CD8 + T cells in a AKT-mTOR dependent manner 乳腺癌细胞衍生的外泌体以 AKT-mTOR 依赖性方式减少活化的 CD8 + T 细胞的糖酵解作用
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-16 DOI: 10.1002/cbin.12241
Abhishek Choudhury, Soumya Chatterjee, Shauryabrota Dalui, Pronabesh Ghosh, Altamas Hossain Daptary, Golam Kibria Mollah, Arindam Bhattacharyya
{"title":"Breast cancer cell derived exosomes reduces glycolysis of activated CD8 + T cells in a AKT-mTOR dependent manner","authors":"Abhishek Choudhury,&nbsp;Soumya Chatterjee,&nbsp;Shauryabrota Dalui,&nbsp;Pronabesh Ghosh,&nbsp;Altamas Hossain Daptary,&nbsp;Golam Kibria Mollah,&nbsp;Arindam Bhattacharyya","doi":"10.1002/cbin.12241","DOIUrl":"10.1002/cbin.12241","url":null,"abstract":"<p>Cytotoxic CD8<sup>+</sup> T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer-derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In-vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"45-54"},"PeriodicalIF":3.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The m6A modification of ACSL4 mRNA sensitized esophageal squamous cell carcinoma to irradiation via accelerating ferroptosis ACSL4 mRNA 的 m6A 修饰通过加速铁变态反应使食管鳞状细胞癌对辐照敏感
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-16 DOI: 10.1002/cbin.12245
Yingying Jin, Shupei Pan, Mincong Wang, Shan Huang, Yue Ke, Dan Li, Hen Luo, Zhanfeng Kou, Dongwen Shi, Weihua Kou, Hongxiao Fu, Jiyuan Pan
{"title":"The m6A modification of ACSL4 mRNA sensitized esophageal squamous cell carcinoma to irradiation via accelerating ferroptosis","authors":"Yingying Jin,&nbsp;Shupei Pan,&nbsp;Mincong Wang,&nbsp;Shan Huang,&nbsp;Yue Ke,&nbsp;Dan Li,&nbsp;Hen Luo,&nbsp;Zhanfeng Kou,&nbsp;Dongwen Shi,&nbsp;Weihua Kou,&nbsp;Hongxiao Fu,&nbsp;Jiyuan Pan","doi":"10.1002/cbin.12245","DOIUrl":"10.1002/cbin.12245","url":null,"abstract":"<p>Radioresistance is a major obstacle for the therapy of esophageal squamous cell carcinoma (ESCC) and lead to a poor prognosis. Ferroptosis is supposed to be responsible for radioresistance. However, the ferroptosis-induced radioresistance in ESCC and its related regulatory mechanisms are not yet fully understood. In this study, human ESCC cell line and the corresponding radioresistance cells were irradiated with 6 megavolts (MV) X-ray. It was showed that irradiation led to less ferroptosis in radioresistant ESCC cells as compared to the parental cells, as depicted by transmission electron microscopy, intracellular Fe<sup>2+</sup> iron contents, lipid peroxidation, and expression of COX2. The increase of ASCL4 expression levels in radioresistant cells after radiotherapy was smaller than that in the parental cells. ACSL4 overexpression significantly enhanced ferroptosis. The fold increase in ACSL4 m<sup>6</sup>A modification in the radioresistant cells was significantly smaller than that in the parental cells as detected by methylated RNA immunoprecipitation with qRT-PCR. METTL14 overexpression accelerated ferroptosis induced by irradiation via upregulating m<sup>6</sup>A modification of ACSL4 mRNA. In conclusions, ferroptosis ablation was responsible for the radioresistant of ESCC. The METTL14-mediated m<sup>6</sup>A modification of ACSL4 mRNA sensitized ESCC to irradiation via accelerating ferroptosis. This study sheds new light on our understanding of radioresistant in ESCC, and provides potential strategies for ESCC radiotherapy.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1877-1890"},"PeriodicalIF":3.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectonucleotidase activity driven by acid ectophosphatase in luminal A MCF-7 breast cancer cells 腔 A MCF-7 乳腺癌细胞中由酸性异磷酸酶驱动的异核苷酸酶活性
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-16 DOI: 10.1002/cbin.12237
Marco Antonio Lacerda-Abreu, Bruna dos Santos Mendonça, Gabriela Nestal de Moraes, José Roberto Meyer-Fernandes
{"title":"Ectonucleotidase activity driven by acid ectophosphatase in luminal A MCF-7 breast cancer cells","authors":"Marco Antonio Lacerda-Abreu,&nbsp;Bruna dos Santos Mendonça,&nbsp;Gabriela Nestal de Moraes,&nbsp;José Roberto Meyer-Fernandes","doi":"10.1002/cbin.12237","DOIUrl":"10.1002/cbin.12237","url":null,"abstract":"<p>Ectophosphatases catalyse the hydrolysis of phosphorylated molecules, such as phospho-amino acids, in the extracellular environment. Nevertheless, the hydrolysis of nucleotides in the extracellular environment is typically catalysed by ectonucleotidases. Studies have shown that acid ectophosphatase, or transmembrane-prostatic acid phosphatase (TM-PAP), a membrane-bound splice variant of prostatic acid phosphatase, has ecto-5′-nucleotidase activity. Furthermore, it was demonstrated that ectophosphatase cannot hydrolyse ATP, ADP, or AMP in triple-negative breast cancer cells. In contrast to previous findings in MDA-MB-231 cells, the ectophosphatase studied in the present work displayed a remarkable capacity to hydrolyse AMP in luminal A breast cancer cells (MCF-7). We showed that AMP dose-dependently inhibited <i>p</i>-nitrophenylphosphate (<i>p</i>-NPP) hydrolysis. The <i>p</i>-NPP and AMP hydrolysis showed similar biochemical behaviours, such as increased hydrolysis under acidic conditions and comparable inhibition by NiCl<sub>2</sub>, ammonium molybdate, and sodium orthovanadate. In addition, this ectophosphatase with ectonucleotidase activity was essential for the release of adenosine and inorganic phosphate from phosphorylated molecules available in the extracellular microenvironment. This is the first study to show that prostatic acid phosphatase on the membrane surface of breast cancer cells (MCF-7) is correlated with cell adhesion and migration.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1637-1648"},"PeriodicalIF":3.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and characterization of fibroblast lines from the northern tiger cat (Leopardus tigrinus, Schreber, 1775) during extended passage and cryopreservation 北方虎猫(Leopardus tigrinus, Schreber, 1775)成纤维细胞系的建立及其在延长通过和冷冻保存过程中的特征描述
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-09-16 DOI: 10.1002/cbin.12244
João Vitor da Silva Viana, Lhara Ricarliany Medeiros de Oliveira, Luanna Lorenna Vieira Rodrigues, Yara Letícia Frutuoso e Silva, Ana Lívia Rocha Rodrigues, Alexandre Rodrigues Silva, Patrícia Vasconcelos Alves, Herlon Victor Rodrigues Silva, Alexsandra Fernandes Pereira
{"title":"Establishment and characterization of fibroblast lines from the northern tiger cat (Leopardus tigrinus, Schreber, 1775) during extended passage and cryopreservation","authors":"João Vitor da Silva Viana,&nbsp;Lhara Ricarliany Medeiros de Oliveira,&nbsp;Luanna Lorenna Vieira Rodrigues,&nbsp;Yara Letícia Frutuoso e Silva,&nbsp;Ana Lívia Rocha Rodrigues,&nbsp;Alexandre Rodrigues Silva,&nbsp;Patrícia Vasconcelos Alves,&nbsp;Herlon Victor Rodrigues Silva,&nbsp;Alexsandra Fernandes Pereira","doi":"10.1002/cbin.12244","DOIUrl":"10.1002/cbin.12244","url":null,"abstract":"<p>The establishment of fibroblast lines enables several applications from the formation of biobanks for the conservation of biodiversity to the use of these cells in physiological and toxicological assays. Considered a species vulnerable to extinction, the characterization of fibroblastic lines of northern tiger cat would contribute to its conservation. Therefore, we established and characterized fibroblasts derived from northern tiger cat during extended passage (third, seventh, and eleventh passages) and cryopreservation with regard to the morphology, viability, apoptotic classification, metabolism, proliferative activity, and oxidative stress by reactive oxygen species (ROS) levels and mitochondrial membrane potential (ΔΨm). Initially, we identified four dermal fibroblast lines by morphology, immunophenotyping, and karyotyping assays. <i>In vitro</i> culture after the third, seventh, and eleventh passages did not affect the viability, apoptotic classification, and ROS levels. Nevertheless, cells at seventh and eleventh passages featured a reduction in metabolism and an alteration in ΔΨm when compared to third passage cells. Additionally, cells at eleventh passage showed changes in the proliferative activity and morphology when compared to other passages. Regarding cryopreservation, no effect was observed on cryopreserved cells for morphology, viability, apoptotic classification, metabolism, and proliferative activity. Nevertheless, cryopreserved cells had alteration for ROS levels and ΔΨm. In summary, fibroblasts from northern tiger cat were affected by extended passage (seventh and eleventh passages) and cryopreservation. Adjustments to the in vitro culture and cryopreservation are necessary to reduce cellular oxidative stress caused by in vitro conditions.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"33-44"},"PeriodicalIF":3.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信