Aida Shomali, Mohammad Sadegh Vafaei Sadi, Mohammad Reza Bakhtiarizadeh, Sasan Aliniaeifard, Anthony Trewavas, Paco Calvo
{"title":"Identification of intelligence-related proteins through a robust two-layer predictor.","authors":"Aida Shomali, Mohammad Sadegh Vafaei Sadi, Mohammad Reza Bakhtiarizadeh, Sasan Aliniaeifard, Anthony Trewavas, Paco Calvo","doi":"10.1080/19420889.2022.2143101","DOIUrl":"https://doi.org/10.1080/19420889.2022.2143101","url":null,"abstract":"<p><p>In this study, we advance a robust methodology for identifying specific intelligence-related proteins across phyla. Our approach exploits a support vector machine-based classifier capable of predicting intelligence-related proteins based on a pool of meaningful protein features. For the sake of illustration of our proposed general method, we develop a novel computational two-layer predictor, Intell_Pred, to predict query sequences (proteins or transcripts) as intelligence-related or non-intelligence-related proteins or transcripts, subsequently classifying the former sequences into learning and memory-related classes. Based on a five-fold cross-validation and independent blind test, Intell_Pred obtained an average accuracy of 87.48 and 88.89, respectively. Our findings revealed that a score >0.75 (during prediction by Intell_Pred) is a well-grounded choice for predicting intelligence-related candidate proteins in most organisms across biological kingdoms. In particular, we assessed seismonastic movements and associate learning in plants and evaluated the proteins involved using Intell_Pred. Proteins related to seismonastic movement and associate learning showed high percentages of similarities with intelligence-related proteins. Our findings lead us to believe that Intell_Pred can help identify the intelligence-related proteins and their classes using a given protein/transcript sequence.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"253-264"},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40697761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On stimulus persistence and human behavior: the stimulus persistence unification theory.","authors":"Tobore Onojighofia Tobore","doi":"10.1080/19420889.2022.2141954","DOIUrl":"10.1080/19420889.2022.2141954","url":null,"abstract":"<p><p>A person trapped in a building engulfed in a raging fire, a person dealing with severe chronic disease, people dealing with a virus pandemic, and people fighting in a protracted war may appear dissimilar but are fundamentally in a similar situation and their behaviors follow a predictable and similar pattern. In this paper, the behaviors of rational people dealing with a significant persistent unpleasant, or dangerous stimulus that is inescapable are elucidated. The unique modulatory effects of stimulus persistence on human behavior as well as the role of means and interest are discussed.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"240-252"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40708268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Island biogeography, competition, and abiotic filtering together control species richness in habitat islands formed by nurse tree canopies in an arid environment.","authors":"Ali A Al-Namazi, Stephen P Bonser","doi":"10.1080/19420889.2022.2139471","DOIUrl":"https://doi.org/10.1080/19420889.2022.2139471","url":null,"abstract":"<p><p>The theory of island biogeography predicts that island size is a key predictor of community species richness. Islands can include any habitat surrounded environments that are inhospitable to the resident species. In arid environments, nurse trees act as islands in an environment uninhabitable to many plant species, and the size of the canopy controls the size of the understory plant community. We predicted that plant species richness will be affected by the area of the habitat and decrease with habitat isolation. We sampled the adult and seedling plant communities at canopy center, canopy edge, and outside canopy microhabitats. We found that species richness in both adult and seedling communities increases with increasing island area. However, richness in seedling communities was greater than in adult communities, and this effect was greatest at the canopy center microhabitat. Competition has been demonstrated to be more important in controlling species distributions near the canopy center, and stress is more important near the canopy edge. Thus, our results suggest that neutral forces, biotic interactions, and abiotic filtering act together to control species richness in these island communities.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"232-239"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40448186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical spiking of psilocybin fungi.","authors":"Antoni Gandia, Andrew Adamatzky","doi":"10.1080/19420889.2022.2136118","DOIUrl":"https://doi.org/10.1080/19420889.2022.2136118","url":null,"abstract":"<p><p>Psilocybin fungi, aka \"magic\" mushrooms, are well known for inducing colorful and visionary states of mind. Such psychoactive properties and the ease of cultivating their basidiocarps within low-tech setups make psilocybin fungi promising pharmacological tools for mental health applications. Understanding of the intrinsic electrical patterns occurring during the mycelial growth can be utilized for better monitoring the physiological states and needs of these species. In this study we aimed to shed light on this matter by characterizing the extra-cellular electrical potential of two popular species of psilocybin fungi: Psilocybe <i>tampanensis</i> and <i>P. cubensis</i>. As in previous experiments with other common edible mushrooms, the undisturbed fungi have shown to generate electric potential spikes and trains of spiking activity. This short analysis provides a proof of intrinsic electrical communication in psilocybin fungi, and further establishes these fungi as a valuable tool for studying fungal electro-physiology.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"226-231"},"PeriodicalIF":0.0,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40443809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tool and techniques study to plant microbiome current understanding and future needs: an overview.","authors":"Enespa, Prem Chandra","doi":"10.1080/19420889.2022.2082736","DOIUrl":"https://doi.org/10.1080/19420889.2022.2082736","url":null,"abstract":"<p><p>Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply <i>in situ</i>. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"209-225"},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40709781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A general theory of consciousness II: <i>The language problem</i>.","authors":"Abraham Peper","doi":"10.1080/19420889.2022.2101194","DOIUrl":"10.1080/19420889.2022.2101194","url":null,"abstract":"<p><p>It is generally assumed that what we hear in our head is what we think and that, when we tell a thought to somebody else, the other person understands what our thought has been. This paper analyzes how we think and what happens when we communicate our thoughts verbally to others and to ourselves. The assumption that we become conscious in language is erroneous: verbal communication is only an intermediary. The conscious experience of verbal communication is a sensory phenomenon. We think through sensory images (see Part I). This natural way of thinking, is a very refined and accurate method of translating thought into consciousness. It expresses our essentially unconscious neural cognitive activity in conscious sensory images: visual thinkers 'see' what they have thought. Why humans use verbal communication to express their thoughts to themselves is difficult to understand as the verbal way is extremely limited. The complex parallel cognitive activity has to be encoded into language tokens which are positioned sequentially as a string of symbols which somehow must express something comparable. Talking to oneself is directed to an imaginary person who is assumed to be the talking person himself. This imaginary person develops with the inner voice in infants and when the child grows up, that imaginary person remains there, somebody he talks to when he thinks and to which he attributes his feelings and his actions. The imaginary person is experienced as the human Self, but actually verbalizes the thoughts of the natural - animal - Self.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"182-189"},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40715999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raffaela Lesch, Kurt Kotrschal, Andrew C Kitchener, W Tecumseh Fitch, Alexander Kotrschal
{"title":"The expensive-tissue hypothesis may help explain brain-size reduction during domestication.","authors":"Raffaela Lesch, Kurt Kotrschal, Andrew C Kitchener, W Tecumseh Fitch, Alexander Kotrschal","doi":"10.1080/19420889.2022.2101196","DOIUrl":"https://doi.org/10.1080/19420889.2022.2101196","url":null,"abstract":"<p><p>Morphological traits, such as white patches, floppy ears and curly tails, are ubiquitous in domestic animals and are referred to as the 'domestication syndrome'. A commonly discussed hypothesis that has the potential to provide a unifying explanation for these traits is the 'neural crest/domestication syndrome hypothesis'. Although this hypothesis has the potential to explain most traits of the domestication syndrome, it only has an indirect connection to the reduction of brain size, which is a typical trait of domestic animals. We discuss how the expensive-tissue hypothesis might help explain brain-size reduction in domestication.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"190-192"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40716001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Omni-local consciousness.","authors":"Andrew Lohrey, Bruce Boreham","doi":"10.1080/19420889.2022.2107726","DOIUrl":"https://doi.org/10.1080/19420889.2022.2107726","url":null,"abstract":"<p><p>We present a general discussion concerning the wholeness of what has been called infinite awareness, but here is called Omni-local consciousness. This model of consciousness has an interconnecting structure that has both local and nonlocal features, that is, the model contains local conscious human minds and locates them within an infinite (Omni) background context of consciousness. This holistic model of Omni-local consciousness is exemplified through an examination of its internal structures of meaning, evident in the exchange relations between its two polarities: local minds and nonlocal, Omni consciousness. Following David Bohm's assertion that, 'The activity of consciousness is determined by meaning' [10, p. 102], we propose that the content of consciousness in every circumstance is always defined by the metaphysical conditions of meaning.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"193-208"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/3b/KCIB_15_2107726.PMC9415576.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33444853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trafficking and localization of <i>KNOTTED1</i> related mRNAs in shoot meristems.","authors":"Munenori Kitagawa, Xiaosa Xu, David Jackson","doi":"10.1080/19420889.2022.2095125","DOIUrl":"10.1080/19420889.2022.2095125","url":null,"abstract":"<p><p>Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, and both its messenger RNA (mRNA) and protein traffic between cells through intercellular nanochannels called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a chaperonin subunit and a catalytic subunit of the RNA exosome, respectively. These studies suggest that the function of KN1 in stem cell regulation requires the cell-to-cell transport of both its protein and mRNA. However, <i>in situ</i> hybridization experiments published 25 years ago suggested that <i>KN1</i> mRNA was missing from the epidermal (L1) layer of shoot meristems, suggesting that only the KN1 protein could traffic. Here, we show evidence that <i>KN1</i> mRNA is present at a low level in L1 cells of maize meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1 layer. We also summarize mRNA expression patterns of KN1 homologs in diverse angiosperm species, and discuss KN1 trafficking mechanisms.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"158-163"},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40588721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and application of novel culture methods in <i>Marchantia polymorpha</i>: persistent tip growth is required for substrate penetration by rhizoids.","authors":"Hikari Mase, Hirofumi Nakagami, Takashi Okamoto, Taku Takahashi, Hiroyasu Motose","doi":"10.1080/19420889.2022.2095137","DOIUrl":"https://doi.org/10.1080/19420889.2022.2095137","url":null,"abstract":"<p><p>A NIMA-related protein kinase, MpNEK1, directs tip growth of rhizoids through microtubule depolymerization in a liverwort <i>Marchantia polymorpha</i>. The Mp<i>nek1</i> knockouts were shown to develop curly and spiral rhizoids due to the fluctuated direction of growth. Still, physiological roles and mechanisms of MpNEK1-dependent rhizoid tip growth remain to be clarified. Here, we developed novel culture methods to further study rhizoid growth of <i>M. polymorpha</i>, in which plants were grown on vertical plates. We applied the established methods to investigate MpNEK1 function in rhizoid growth. Rhizoids of the wild-type and Mp<i>nek1</i> plants grew toward the gravity. The aerial rhizoids were longer in Mp<i>nek1</i> than in the wild type. When the rhizoids were grown on the surface of a cellophane sheet, rhizoid length was comparable between the wild type and Mp<i>nek1</i>, whereas Mp<i>nek1</i> developed more rhizoids compared to the wild type. We also applied gellan gum, which is more transparent than agar, to analyze rhizoids grown in the medium. Rhizoids of Mp<i>nek1</i> displayed defect on entering into the solid medium. These results suggest that Mp<i>nek1</i> rhizoids have the deficiency in invasive tip growth. Thus, stable directional growth is important for rhizoids to get into the soil to anchor plant body and to adsorb water and nutrients. Collectively, our newly designed growth systems are valuable for analyzing rhizoid growth.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"164-167"},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40588722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}