International Journal of Cell Biology最新文献

筛选
英文 中文
A Simple and Efficient Method for Preparing Cell Slides and Staining without Using Cytocentrifuge and Cytoclips 一种不使用细胞离心机和细胞夹制备细胞载玻片和染色的简单有效方法
International Journal of Cell Biology Pub Date : 2015-11-17 DOI: 10.1155/2015/813216
Xiaotang Hu, V. Laguerre, Daniel Packert, Alice Nakasone, L. Moscinski
{"title":"A Simple and Efficient Method for Preparing Cell Slides and Staining without Using Cytocentrifuge and Cytoclips","authors":"Xiaotang Hu, V. Laguerre, Daniel Packert, Alice Nakasone, L. Moscinski","doi":"10.1155/2015/813216","DOIUrl":"https://doi.org/10.1155/2015/813216","url":null,"abstract":"Cell staining is a necessary and useful technique for visualizing cell morphology and structure under a microscope. This technique has been used in many areas such as cytology, hematology, oncology, histology, virology, serology, microbiology, cell biology, and immunochemistry. One of the key pieces of equipment for preparing a slide for cell staining is cytology centrifuge (cytocentrifuge) such as cytospin. However, many small labs do not have this expensive equipment and its accessory, cytoclips (also expensive relatively), which makes them difficult to study cell cytology. Here we present an alternative method for preparing a slide and cell staining in the absence of a cytocentrifuge (and cytoclips). This method is based on the principle that a regular cell centrifuge can be used to concentrate cells harvested from cell culture and then deposit the concentrated cell suspension to a slide evenly by using a cell spreader, followed by cell staining. The method presented is simple, rapid, economic, and efficient. This method may also avoid a possible change in cell morphology induced by cytocentrifuge.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"135 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/813216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65162306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Hyaluronan Synthase 3 Null Mice Exhibit Decreased Intestinal Inflammation and Tissue Damage in the DSS-Induced Colitis Model. 透明质酸合酶3缺失小鼠在dss诱导的结肠炎模型中表现出肠道炎症和组织损伤的减轻。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/745237
Sean P Kessler, Dana R Obery, Carol de la Motte
{"title":"Hyaluronan Synthase 3 Null Mice Exhibit Decreased Intestinal Inflammation and Tissue Damage in the DSS-Induced Colitis Model.","authors":"Sean P Kessler,&nbsp;Dana R Obery,&nbsp;Carol de la Motte","doi":"10.1155/2015/745237","DOIUrl":"https://doi.org/10.1155/2015/745237","url":null,"abstract":"<p><p>Hyaluronan (HA) overproduction is a hallmark of multiple inflammatory diseases, including inflammatory bowel disease (IBD). Hyaluronan can act as a leukocyte recruitment molecule and in the most common mouse model of intestinal inflammation, the chemically induced dextran sodium sulfate (DSS) experimental colitis model, we previously determined that changes in colon distribution of HA occur before inflammation. Therefore, we hypothesized that, during a pathologic challenge, HA promotes inflammation. In this study, we tested the progression of inflammation in mice null for the hyaluronan synthase genes (HAS1, HAS3, or both HAS1 and HAS3) in the DSS-colitis model. Our data demonstrate that both the HAS1/HAS3 double and the HAS3 null mice are protected from colitis, compared to wild-type and HAS1 null mice, as determined by measurement of weight loss, disease activity, serum IL-6 levels, histologic scoring, and immunohistochemistry. Most notable is the dramatic increase in submucosal microvasculature, hyaluronan deposition, and leukocyte infiltration in the inflamed colon tissue of wild-type and HAS1 null mice. Our data suggest, HAS3 plays a crucial role in driving gut inflammation. Developing a temporary targeted therapeutic intervention of HAS3 expression or function in the microcirculation may emerge as a desirable strategy toward tempering colitis in patients undergoing flares of IBD. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"745237"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/745237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34138712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery. 用于抗癌药物递送的羧甲基透明质酸稳定纳米颗粒。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/249573
Jessica L Woodman, Min Sung Suh, Jianxing Zhang, Yuvabharath Kondaveeti, Diane J Burgess, Bruce A White, Glenn D Prestwich, Liisa T Kuhn
{"title":"Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery.","authors":"Jessica L Woodman,&nbsp;Min Sung Suh,&nbsp;Jianxing Zhang,&nbsp;Yuvabharath Kondaveeti,&nbsp;Diane J Burgess,&nbsp;Bruce A White,&nbsp;Glenn D Prestwich,&nbsp;Liisa T Kuhn","doi":"10.1155/2015/249573","DOIUrl":"https://doi.org/10.1155/2015/249573","url":null,"abstract":"<p><p>Carboxymethyl hyaluronic acid (CMHA) is a semisynthetic derivative of HA that is recognized by HA binding proteins but contains an additional carboxylic acid on some of the 6-hydroxyl groups of the N-acetyl glucosamine sugar units. These studies tested the ability of CMHA to stabilize the formation of calcium phosphate nanoparticles and evaluated their potential to target therapy resistant, CD44(+)/CD24(-/low) human breast cancer cells (BT-474EMT). CMHA stabilized particles (nCaP(CMHA)) were loaded with the chemotherapy drug cis-diamminedichloroplatinum(II) (CDDP) to form nCaP(CMHA)CDDP. nCaP(CMHA)CDDP was determined to be poorly crystalline hydroxyapatite, 200 nm in diameter with a -43 mV zeta potential. nCaP(CMHA)CDDP exhibited a two-day burst release of CDDP that tapered resulting in 86% release by 7 days. Surface plasmon resonance showed that nCaP(CMHA)CDDP binds to CD44, but less effectively than CMHA or hyaluronan. nCaP(CMHA-AF488) was taken up by CD44(+)/CD24(-) BT-474EMT breast cancer cells within 18 hours. nCaP(CMHA)CDDP was as cytotoxic as free CDDP against the BT-474EMT cells. Subcutaneous BT-474EMT tumors were more reproducibly inhibited by a near tumor dose of 2.8 mg/kg CDDP than a 7 mg/kg dose nCaP(CMHA)CDDP. This was likely due to a lack of distribution of nCaP(CMHA)CDDP throughout the dense tumor tissue that limited drug diffusion. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"249573"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/249573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34240812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Correlative Light and Electron Microscopy Reveals the HAS3-Induced Dorsal Plasma Membrane Ruffles. 相关光镜和电镜显示has3诱导的背质膜皱褶。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/769163
Kirsi Rilla, Arto Koistinen
{"title":"Correlative Light and Electron Microscopy Reveals the HAS3-Induced Dorsal Plasma Membrane Ruffles.","authors":"Kirsi Rilla,&nbsp;Arto Koistinen","doi":"10.1155/2015/769163","DOIUrl":"https://doi.org/10.1155/2015/769163","url":null,"abstract":"<p><p>Hyaluronan is a linear sugar polymer synthesized by three isoforms of hyaluronan synthases (HAS1, 2, and 3) that forms a hydrated scaffold around cells and is an essential component of the extracellular matrix. The morphological changes of cells induced by active hyaluronan synthesis are well recognized but not studied in detail with high resolution before. We have previously found that overexpression of HAS3 induces growth of long plasma membrane protrusions that act as platforms for hyaluronan synthesis. The study of these thin and fragile protrusions is challenging, and they are difficult to preserve by fixation unless they are adherent to the substrate. Thus their structure and regulation are still partly unclear despite careful imaging with different microscopic methods in several cell types. In this study, correlative light and electron microscopy (CLEM) was utilized to correlate the GFP-HAS3 signal and the surface ultrastructure of cells in order to study in detail the morphological changes induced by HAS3 overexpression. Surprisingly, this method revealed that GFP-HAS3 not only localizes to ruffles but in fact induces dorsal ruffle formation. Dorsal ruffles regulate diverse cellular functions, such as motility, regulation of glucose metabolism, spreading, adhesion, and matrix degradation, the same functions driven by active hyaluronan synthesis. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"769163"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/769163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34138713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
High Sensitivity Method to Estimate Distribution of Hyaluronan Molecular Sizes in Small Biological Samples Using Gas-Phase Electrophoretic Mobility Molecular Analysis. 利用气相电泳迁移率分子分析估算小生物样品中透明质酸分子大小分布的高灵敏度方法。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/938013
Lan Do, Christen P Dahl, Susanne Kerje, Peter Hansell, Stellan Mörner, Ulla Lindqvist, Anna Engström-Laurent, Göran Larsson, Urban Hellman
{"title":"High Sensitivity Method to Estimate Distribution of Hyaluronan Molecular Sizes in Small Biological Samples Using Gas-Phase Electrophoretic Mobility Molecular Analysis.","authors":"Lan Do,&nbsp;Christen P Dahl,&nbsp;Susanne Kerje,&nbsp;Peter Hansell,&nbsp;Stellan Mörner,&nbsp;Ulla Lindqvist,&nbsp;Anna Engström-Laurent,&nbsp;Göran Larsson,&nbsp;Urban Hellman","doi":"10.1155/2015/938013","DOIUrl":"https://doi.org/10.1155/2015/938013","url":null,"abstract":"<p><p>Hyaluronan is a negatively charged polydisperse polysaccharide where both its size and tissue concentration play an important role in many physiological and pathological processes. The various functions of hyaluronan depend on its molecular size. Up to now, it has been difficult to study the role of hyaluronan in diseases with pathological changes in the extracellular matrix where availability is low or tissue samples are small. Difficulty to obtain large enough biopsies from human diseased tissue or tissue from animal models has also restricted the study of hyaluronan. In this paper, we demonstrate that gas-phase electrophoretic molecular mobility analyzer (GEMMA) can be used to estimate the distribution of hyaluronan molecular sizes in biological samples with a limited amount of hyaluronan. The low detection level of the GEMMA method allows for estimation of hyaluronan molecular sizes from different parts of small organs. Hence, the GEMMA method opens opportunity to attain a profile over the distribution of hyaluronan molecular sizes and estimate changes caused by disease or experimental conditions that has not been possible to obtain before. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"938013"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/938013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34138714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs. hare介导的透明质酸和肝素的内吞作用是由三种内吞基序的不同亚群靶向的。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-03-25 DOI: 10.1155/2015/524707
Madhu S Pandey, Edward N Harris, Paul H Weigel
{"title":"HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs.","authors":"Madhu S Pandey,&nbsp;Edward N Harris,&nbsp;Paul H Weigel","doi":"10.1155/2015/524707","DOIUrl":"https://doi.org/10.1155/2015/524707","url":null,"abstract":"<p><p>The hyaluronan (HA) receptor for endocytosis (HARE) is a multifunctional recycling clearance receptor for 14 different ligands, including HA and heparin (Hep), which bind to discrete nonoverlapping sites. Four different functional endocytic motifs (M) in the cytoplasmic domain (CD) target coated pit mediated uptake: (YSYFRI(2485) (M1), FQHF(2495) (M2), NPLY(2519) (M3), and DPF(2534) (M4)). We previously found (Pandey et al. J. Biol. Chem. 283, 21453, 2008) that M1, M2, and M3 mediate endocytosis of HA. Here we assessed the ability of HARE variants with a single-motif deletion or containing only a single motif to endocytose HA or Hep. Single-motif deletion variants lacking M1, M3, or M4 (a different subset than involved in HA uptake) showed decreased Hep endocytosis, although M3 was the most active; the remaining redundant motifs did not compensate for loss of other motifs. Surprisingly, a HARE CD variant with only M3 internalized both HA and Hep, whereas variants with either M2 or M4 alone did not endocytose either ligand. Internalization of HA and Hep by HARE CD mutants was dynamin-dependent and was inhibited by hyperosmolarity, confirming clathrin-mediated endocytosis. The results indicate a complicated relationship among multiple CD motifs that target coated pit uptake and a more fundamental role for motif M3. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"524707"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/524707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33224928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2. 杂化和复合n -聚糖对内源性氯共转运体Slc12a2细胞表面靶向的影响
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-08-17 DOI: 10.1155/2015/505294
Richa Singh, Mohammed Mashari Almutairi, Romario Pacheco-Andrade, Mohamed Y Mahmoud Almiahuob, Mauricio Di Fulvio
{"title":"Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2.","authors":"Richa Singh,&nbsp;Mohammed Mashari Almutairi,&nbsp;Romario Pacheco-Andrade,&nbsp;Mohamed Y Mahmoud Almiahuob,&nbsp;Mauricio Di Fulvio","doi":"10.1155/2015/505294","DOIUrl":"https://doi.org/10.1155/2015/505294","url":null,"abstract":"<p><p>The Na(+)K(+)2Cl(-) cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"505294"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/505294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33988713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Advances in Hyaluronan Biology: Signaling, Regulation, and Disease Mechanisms. 透明质酸生物学研究进展:信号、调控和疾病机制。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-13 DOI: 10.1155/2015/690572
Melanie A Simpson, Carol de la Motte, Larry S Sherman, Paul H Weigel
{"title":"Advances in Hyaluronan Biology: Signaling, Regulation, and Disease Mechanisms.","authors":"Melanie A Simpson,&nbsp;Carol de la Motte,&nbsp;Larry S Sherman,&nbsp;Paul H Weigel","doi":"10.1155/2015/690572","DOIUrl":"https://doi.org/10.1155/2015/690572","url":null,"abstract":"Hyaluronan is an extracellular glycosaminoglycan polymer consisting of linear disaccharide units containing alternating glucuronate and N-acetylglucosamine. Many cell types make hyaluronan, which unlike most other macromolecules is assembled at the plasma membrane and concurrently translocated through the hyaluronan synthase enzyme. The normal function of large hyaluronan polymers (>1 MDa) in tissue cushioning, hydration, and lubrication is well established. The aberrant accumulation and degradation of hyaluronan and the receptor-mediated signaling of smaller hyaluronan fragments have also been extensively implicated in a variety of pathological states including inflammation and cancer. More recently, the discovery that hyaluronan can either be a structural matrix component or appear as smaller processed polymers and oligomers that differentially engage a diverse range of signaling receptors has created an exciting paradigm shift and reenergized hyaluronan research in a broad range of fields. In this special issue, eight review articles focus on summarizing the latest contributions to understanding hyaluronan synthesis and catabolism and the regulation of hyaluronan functions. Seven novel primary research articles also investigate multiple roles of hyaluronan in disease progression and targeting. \u0000 \u0000The review by P. H. Weigel discusses the mechanism of hyaluronan synthesis and polymer extrusion by the hyaluronan synthase family members as well as topological features of the enzymes, their functional requirement for associated lipids within the plasma membrane, and a proposed bioenergetic model for the concurrent translocation of hyaluronan to the extracellular space by the enzyme during synthesis. The review by M. Viola et al. addresses the regulation of hyaluronan synthesis by posttranslational modifications of HAS2 and the metabolic conditions that contribute to dysregulated synthesis in atherosclerosis. S. Shakya et al. review the recent data on cellular mechanisms such as autophagic release of hyaluronan-containing vesicles that are triggered in response to glucose overexposure and studies on the impact of altered hyaluronan synthesis in diabetic wound healing. J. M. Cyphert et al. provide an overview of hyaluronan synthesis and degradation, as well as a discussion of the widely differing signaling properties conferred by short processed oligomers versus long newly synthesized polymers of hyaluronan. L. S. Sherman et al. discuss the roles of hyaluronan in nervous system injury and propose a model by which the balance between hyaluronan synthesis and catabolism influences nervous system repair. M. E. Lauer et al. summarizes effects of environmental factors that stimulate hyaluronan production in the lung and review the functional studies that reveal a protective and regenerative role for hyaluronan polymers in lung injury repair. Finally, reviews by S. Misra et al. and S. Ghatak et al. summarize research on the interaction of hyaluronan with p","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"690572"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/690572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34137101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
The Rise and Fall of Hyaluronan in Respiratory Diseases. 呼吸系统疾病中透明质酸的升降。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/712507
Mark E Lauer, Raed A Dweik, Stavros Garantziotis, Mark A Aronica
{"title":"The Rise and Fall of Hyaluronan in Respiratory Diseases.","authors":"Mark E Lauer,&nbsp;Raed A Dweik,&nbsp;Stavros Garantziotis,&nbsp;Mark A Aronica","doi":"10.1155/2015/712507","DOIUrl":"https://doi.org/10.1155/2015/712507","url":null,"abstract":"<p><p>In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"712507"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/712507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34138711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. 蛋白聚糖和糖胺聚糖在伤口愈合和纤维化中的作用。
International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI: 10.1155/2015/834893
Shibnath Ghatak, Edward V Maytin, Judith A Mack, Vincent C Hascall, Ilia Atanelishvili, Ricardo Moreno Rodriguez, Roger R Markwald, Suniti Misra
{"title":"Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis.","authors":"Shibnath Ghatak,&nbsp;Edward V Maytin,&nbsp;Judith A Mack,&nbsp;Vincent C Hascall,&nbsp;Ilia Atanelishvili,&nbsp;Ricardo Moreno Rodriguez,&nbsp;Roger R Markwald,&nbsp;Suniti Misra","doi":"10.1155/2015/834893","DOIUrl":"https://doi.org/10.1155/2015/834893","url":null,"abstract":"<p><p>A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM) production that leads to a dense and functionally abnormal connective tissue compartment (dermis). In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes), the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"834893"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/834893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34138715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 149
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信