Journal of Structural Biology: X最新文献

筛选
英文 中文
Corrigendum to “Minimizing ice contamination during specimen preparation for cryo-soft X-ray tomography and cryo-electron tomography” [J. Struct. Biol.: X 10(2024) 100113] 对 "尽量减少低温软 X 射线断层成像和低温电子断层成像标本制备过程中的冰污染 "的更正[J. Struct.
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-30 DOI: 10.1016/j.yjsbx.2024.100115
Chia-Chun Hsieh, Zi-Jing Lin, Lee-Jene Lai
{"title":"Corrigendum to “Minimizing ice contamination during specimen preparation for cryo-soft X-ray tomography and cryo-electron tomography” [J. Struct. Biol.: X 10(2024) 100113]","authors":"Chia-Chun Hsieh, Zi-Jing Lin, Lee-Jene Lai","doi":"10.1016/j.yjsbx.2024.100115","DOIUrl":"10.1016/j.yjsbx.2024.100115","url":null,"abstract":"","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100115"},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial by Natalie Reznikov [for Buss et al., “Hierarchical organization of bone in three dimensions: A twist of twists” (2022)] Natalie Reznikov [为 Buss 等人撰写的社论《骨骼的三维分层组织:扭曲的扭曲"(2022 年]
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-30 DOI: 10.1016/j.yjsbx.2024.100116
{"title":"Editorial by Natalie Reznikov [for Buss et al., “Hierarchical organization of bone in three dimensions: A twist of twists” (2022)]","authors":"","doi":"10.1016/j.yjsbx.2024.100116","DOIUrl":"10.1016/j.yjsbx.2024.100116","url":null,"abstract":"","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100116"},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of the stable form of fibroblast growth factor 2 – FGF2-STAB 成纤维细胞生长因子 2(FGF2-STAB)稳定形式的结构分析
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-24 DOI: 10.1016/j.yjsbx.2024.100112
Gabin de La Bourdonnaye , Martin Marek , Tereza Ghazalova , Jiri Damborsky , Petr Pachl , Jiri Brynda , Veronika Stepankova , Radka Chaloupkova
{"title":"Structural analysis of the stable form of fibroblast growth factor 2 – FGF2-STAB","authors":"Gabin de La Bourdonnaye ,&nbsp;Martin Marek ,&nbsp;Tereza Ghazalova ,&nbsp;Jiri Damborsky ,&nbsp;Petr Pachl ,&nbsp;Jiri Brynda ,&nbsp;Veronika Stepankova ,&nbsp;Radka Chaloupkova","doi":"10.1016/j.yjsbx.2024.100112","DOIUrl":"10.1016/j.yjsbx.2024.100112","url":null,"abstract":"<div><div>Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT. FGF2 has strong potential for application in cell culturing, wound healing, and cosmetics but the potential is severely limited by its low protein stability. The thermostable variant FGF2-STAB was constructed by computer-assisted protein engineering to overcome the natural limitation of FGF2. Previously reported characterization of FGF2-STAB revealed an enhanced ability to induce MAP/ERK signaling while having a lower dependence on heparin when compared with FGF2-wt. Here we report the crystal structure of FGF2-STAB solved at 1.3 Å resolution. Protein stabilization is achieved by newly formed hydrophobic interactions, polar contacts, and one additional hydrogen bond. The overall structure of FGF2-STAB is similar to FGF2-wt and does not reveal information on the experimentally observed lower dependence on heparin. A noticeable difference in flexibility in the receptor binding region can explain the differences in signaling between FGF2-STAB and its wild-type counterpart. Our structural analysis provided molecular insights into the stabilization and unique biological properties of FGF2-STAB.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100112"},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization of albumin with correlative super resolution light- and electron microscopy in the kidney 利用相关超分辨率光镜和电子显微镜确定肾脏中白蛋白的位置
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-21 DOI: 10.1016/j.yjsbx.2024.100114
Alexandra N. Birtasu , Utz H. Ermel , Johanna V. Rahm , Anja Seybert , Benjamin Flottmann , Mike Heilemann , Florian Grahammer , Achilleas S. Frangakis
{"title":"Localization of albumin with correlative super resolution light- and electron microscopy in the kidney","authors":"Alexandra N. Birtasu ,&nbsp;Utz H. Ermel ,&nbsp;Johanna V. Rahm ,&nbsp;Anja Seybert ,&nbsp;Benjamin Flottmann ,&nbsp;Mike Heilemann ,&nbsp;Florian Grahammer ,&nbsp;Achilleas S. Frangakis","doi":"10.1016/j.yjsbx.2024.100114","DOIUrl":"10.1016/j.yjsbx.2024.100114","url":null,"abstract":"<div><div>The functioning of vertebrate life relies on renal filtration of surplus fluid and elimination of low-molecular-weight waste products, while keeping serum proteins in the blood. In disease, however, there is leak of serum proteins and tracing them to identify the leaking position within tissue with a nanometer resolution poses a significant challenge. Correlative microscopy integrates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Using chemical tagging of albumin with synthetic fluorophores we achieve protein-specific labeling that preserve their post-embedding fluorescence after high-pressure freezing and freeze-substitution of murine kidney tissue. Using advanced registration techniques for super-resolution correlative light and electron microscopy, we can localize the labeled albumin with a high precision in the x-y plane of electron micrographs and cartograph its distribution. Thereby we can quantify the albumin concentration and measure a linear reduction gradient across the kidney filtration barrier. Our study shows the feasibility of combining different microscopy contrasts for tracing fluorescently labeled protein markers with super resolution in various tissue samples and opens new perspectives for correlative imaging in volume electron microscopy.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100114"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimizing ice contamination during specimen preparation for cryo-soft X-ray tomography and cryo-electron tomography 尽量减少低温软 X 射线断层扫描和低温电子断层扫描标本制备过程中的冰污染
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-18 DOI: 10.1016/j.yjsbx.2024.100113
Chia-Chun Hsieh, Zi-Jing Lin, Lee-Jene Lai
{"title":"Minimizing ice contamination during specimen preparation for cryo-soft X-ray tomography and cryo-electron tomography","authors":"Chia-Chun Hsieh,&nbsp;Zi-Jing Lin,&nbsp;Lee-Jene Lai","doi":"10.1016/j.yjsbx.2024.100113","DOIUrl":"10.1016/j.yjsbx.2024.100113","url":null,"abstract":"<div><div>Cryo-soft X-ray tomography (cryo-SXT) is a newly developed technique for imaging 3D whole cells in nearly native states. Cryo-SXT users require the preparation of numerous cryo-sample grids to use the allocated beamtime to study cellular phenomena under various conditions. Therefore, it is important to promptly prepare cryo-sample grids as efficiently and carefully as possible to minimize ice contamination on the frozen sample grid. In this study, we designed a cryo-multi-grid-box storage system, which includes a shell, funnel holder, and multi-grid-box container. Our system not only increases the number of cryo-sample grids that can be temporarily stored but also reduces the frequency of cryo grid-box container transfers, thus decreasing the probability of forming ice on the grid. We have also applied this system to A549 cryo cell grid preparation. The correlative images from cryo-light microscopy and cryo-SXT showed that limited ice had formed on the grid when preparation was performed using our system. Additionally, 3D images of mitochondria with the lamellar shape of the cristae could be observed in our cryo-SXT results. Our cryo-multi-grid-box storage system can be used for cryo-SXT and cryo-electron tomography (cryo-ET) applications.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100113"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of submicron bone tissue composition in plastic-embedded samples using optical photothermal infrared (O-PTIR) spectral imaging and machine learning 利用光学光热红外(O-PTIR)光谱成像和机器学习评估塑料包埋样本中的亚微米骨组织成分
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-10-09 DOI: 10.1016/j.yjsbx.2024.100111
Isha Dev , Sofia Mehmood , Nancy Pleshko , Iyad Obeid , William Querido
{"title":"Assessment of submicron bone tissue composition in plastic-embedded samples using optical photothermal infrared (O-PTIR) spectral imaging and machine learning","authors":"Isha Dev ,&nbsp;Sofia Mehmood ,&nbsp;Nancy Pleshko ,&nbsp;Iyad Obeid ,&nbsp;William Querido","doi":"10.1016/j.yjsbx.2024.100111","DOIUrl":"10.1016/j.yjsbx.2024.100111","url":null,"abstract":"<div><div>Understanding the composition of bone tissue at the submicron level is crucial to elucidate factors contributing to bone disease and fragility. Here, we introduce a novel approach utilizing optical photothermal infrared (O-PTIR) spectroscopy and imaging coupled with machine learning analysis to assess bone tissue composition at 500 nm spatial resolution. This approach was used to evaluate thick bone samples embedded in typical poly(methyl methacrylate) (PMMA) blocks, eliminating the need for cumbersome thin sectioning. We demonstrate the utility of O-PTIR imaging to assess the distribution of bone tissue mineral and protein, as well as to explore the structure-composition relationship surrounding microporosity at a spatial resolution unattainable by conventional infrared imaging modalities. Using bone samples from wildtype (WT) mice and from a mouse model of osteogenesis imperfecta (OIM), we further showcase the application of O-PTIR spectroscopy to quantify mineral content, crystallinity, and carbonate content in spatially defined regions across the cortical bone. Notably, we show that machine learning analysis using support vector machine (SVM) was successful in identifying bone phenotypes (typical in WT, fragile in OIM) based on input of spectral data, with over 86 % of samples correctly identified when using the collagen spectral range. Our findings highlight the potential of O-PTIR spectroscopy and imaging as valuable tools for exploring bone submicron composition.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100111"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational variability in the D2 loop of Plasmodium Apical Membrane antigen 1 疟原虫顶膜抗原 1 D2 环的构象变异性
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-09-10 DOI: 10.1016/j.yjsbx.2024.100110
Frederick A. Saul , Brigitte Vulliez-Le Normand , Alexander Boes , Holger Spiegel , Clemens H.M. Kocken , Bart W. Faber , Graham A. Bentley
{"title":"Conformational variability in the D2 loop of Plasmodium Apical Membrane antigen 1","authors":"Frederick A. Saul ,&nbsp;Brigitte Vulliez-Le Normand ,&nbsp;Alexander Boes ,&nbsp;Holger Spiegel ,&nbsp;Clemens H.M. Kocken ,&nbsp;Bart W. Faber ,&nbsp;Graham A. Bentley","doi":"10.1016/j.yjsbx.2024.100110","DOIUrl":"10.1016/j.yjsbx.2024.100110","url":null,"abstract":"<div><p>Apical Membrane Antigen 1 (AMA1) plays a vital role in the invasion of the host erythrocyte by the malaria parasite, <em>Plasmodium</em>. It is thus an important target for vaccine and anti-malaria therapeutic strategies that block the invasion process. AMA1, present on the surface of the parasite, interacts with RON2, a component of the parasite’s rhoptry neck (RON) protein complex, which is transferred to the erythrocyte membrane during invasion. The D2 loop of AMA1 plays an essential role in invasion as it partially covers the RON2-binding site and must therefore be displaced for invasion to proceed. Several structural studies have shown that the D2 loop is very mobile, a property that is probably important for the function of AMA1. Here we present three crystal structures of AMA1 from <em>P. falciparum</em> (strains 3D7 and FVO) and <em>P. vivax</em> (strain Sal1), in which the D2 loop could be largely traced in the electron density maps. The D2 loop of PfAMA1-FVO and PvAMA1 (as a complex with a monoclonal antibody Fab) has a conformation previously noted in the <em>P. knowlesi</em> AMA1 structure. The D2 loop of PfAMA1-3D7, however, reveals a novel conformation. We analyse the conformational variability of the D2 loop in these structures, together with those previously reported. Three different conformations can be distinguished, all of which are highly helical and show some similarity in their secondary structure organisation. We discuss the significance of these observations in the light of the flexible nature of the D2 loop and its role in AMA1 function.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100110"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590152424000151/pdfft?md5=18146cbe19a02e66f922067a1ea42cae&pid=1-s2.0-S2590152424000151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39 SARS-CoV-2 MT 酶 nsp14 与抑制剂 STM957 的结构揭示了与痘病毒 MT 酶 VP39 共享的抑制机制
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-07-29 DOI: 10.1016/j.yjsbx.2024.100109
Eva Zilecka, Martin Klima, Milan Stefek, Milan Dejmek, Radim Nencka, Evzen Boura
{"title":"Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39","authors":"Eva Zilecka,&nbsp;Martin Klima,&nbsp;Milan Stefek,&nbsp;Milan Dejmek,&nbsp;Radim Nencka,&nbsp;Evzen Boura","doi":"10.1016/j.yjsbx.2024.100109","DOIUrl":"10.1016/j.yjsbx.2024.100109","url":null,"abstract":"<div><p>Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor − the S-adenosyl methionine (SAM) − featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100109"},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015242400014X/pdfft?md5=adc7af4fba68360ac9d28aa0d253354d&pid=1-s2.0-S259015242400014X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do selectivity filter carbonyls in K+ channels flip away from the pore? Two-dimensional infrared spectroscopy study K+ 通道中的选择性过滤羰基是否会从孔中翻转?二维红外光谱研究
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-07-15 DOI: 10.1016/j.yjsbx.2024.100108
Nikhil Maroli , Matthew J. Ryan , Martin T. Zanni , Alexei A. Kananenka
{"title":"Do selectivity filter carbonyls in K+ channels flip away from the pore? Two-dimensional infrared spectroscopy study","authors":"Nikhil Maroli ,&nbsp;Matthew J. Ryan ,&nbsp;Martin T. Zanni ,&nbsp;Alexei A. Kananenka","doi":"10.1016/j.yjsbx.2024.100108","DOIUrl":"10.1016/j.yjsbx.2024.100108","url":null,"abstract":"<div><p>Molecular dynamics simulations revealed that the carbonyls of the Val residue in the conserved selectivity filter sequence TVGTG of potassium ion channels can flip away from the pore to form hydrogen bonds with the network of water molecules residing behind the selectivity filter. Such a configuration has been proposed to be relevant for C-type inactivation. Experimentally, X-ray crystallography of the KcsA channel admits the possibility that the Val carbonyls can flip, but it cannot decisively confirm the existence of such a configuration. In this study, we combined molecular dynamics simulations and line shape theory to design two-dimensional infrared spectroscopy experiments that can corroborate the existence of the selectivity filter configuration with flipped Val carbonyls. This ability to distinguish between flipped and unflipped carbonyls is based on the varying strength of the electric field inside and outside the pore, which is directly linked to carbonyl stretching frequencies that can be resolved using infrared spectroscopy.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100108"},"PeriodicalIF":3.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590152424000138/pdfft?md5=13bf2c257aaf33fbd68799a7ce5f4412&pid=1-s2.0-S2590152424000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroED structure of the C11 cysteine protease clostripain C11 半胱氨酸蛋白酶 Clostripain 的显微电子数据结构
IF 3.5
Journal of Structural Biology: X Pub Date : 2024-07-06 DOI: 10.1016/j.yjsbx.2024.100107
Yasmeen N. Ruma , Guanhong Bu , Johan Hattne , Tamir Gonen
{"title":"MicroED structure of the C11 cysteine protease clostripain","authors":"Yasmeen N. Ruma ,&nbsp;Guanhong Bu ,&nbsp;Johan Hattne ,&nbsp;Tamir Gonen","doi":"10.1016/j.yjsbx.2024.100107","DOIUrl":"https://doi.org/10.1016/j.yjsbx.2024.100107","url":null,"abstract":"<div><p>Clostripain secreted from <em>Clostridium histolyticum</em> is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of <em>C. histolyticum</em> clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"10 ","pages":"Article 100107"},"PeriodicalIF":3.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590152424000126/pdfft?md5=42cb6b31866b2698d485367c031389f5&pid=1-s2.0-S2590152424000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信