python -match-pick:模板匹配中自动分类的tophat-transform约束

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marten L. Chaillet , Sander Roet , Remco C. Veltkamp , Friedrich Förster
{"title":"python -match-pick:模板匹配中自动分类的tophat-transform约束","authors":"Marten L. Chaillet ,&nbsp;Sander Roet ,&nbsp;Remco C. Veltkamp ,&nbsp;Friedrich Förster","doi":"10.1016/j.yjsbx.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Template matching (TM) in cryo-electron tomography (cryo-ET) enables <em>in situ</em> detection and localization of known macromolecules. However, TM faces challenges of weak signal of the macromolecules and interfering features with a high signal-to-noise ratio, which are often addressed by time-consuming, subjective manual curation of results. To improve the detection performance we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"11 ","pages":"Article 100125"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pytom-match-pick: A tophat-transform constraint for automated classification in template matching\",\"authors\":\"Marten L. Chaillet ,&nbsp;Sander Roet ,&nbsp;Remco C. Veltkamp ,&nbsp;Friedrich Förster\",\"doi\":\"10.1016/j.yjsbx.2025.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Template matching (TM) in cryo-electron tomography (cryo-ET) enables <em>in situ</em> detection and localization of known macromolecules. However, TM faces challenges of weak signal of the macromolecules and interfering features with a high signal-to-noise ratio, which are often addressed by time-consuming, subjective manual curation of results. To improve the detection performance we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.</div></div>\",\"PeriodicalId\":17238,\"journal\":{\"name\":\"Journal of Structural Biology: X\",\"volume\":\"11 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Biology: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590152425000066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152425000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低温电子断层扫描(cryo-ET)中的模板匹配(TM)使已知大分子的原位检测和定位成为可能。然而,TM面临着大分子信号弱和高信噪比的干扰特征的挑战,这些问题往往需要耗时、主观的人工整理结果来解决。为了提高检测性能,我们引入了python -match-pick,这是一个gpu加速的开源命令行接口,用于在cryo-ET中增强TM。使用pytomm -match-pick,我们首先量化了点扩散函数(PSF)加权的影响,并表明倾斜加权PSF优于具有单个散焦估计的二元楔形。我们还评估了之前介绍的背景归一化方法的分类性能。这表明相位随机化在减少误报方面比频谱白化更有效。此外,将tophat变换应用于分数图,结合双约束阈值策略,减少了误报,提高了精度。我们在公共数据集上对模型匹配选择进行了基准测试,证明了核糖体亚基和蛋白酶体等大分子的分类和定位得到了改进,从而减少了亚断层图平均值中的伪影。该工具有望通过提高细胞环境中大分子检测的效率和准确性来推进视觉蛋白质组学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

pytom-match-pick: A tophat-transform constraint for automated classification in template matching

pytom-match-pick: A tophat-transform constraint for automated classification in template matching
Template matching (TM) in cryo-electron tomography (cryo-ET) enables in situ detection and localization of known macromolecules. However, TM faces challenges of weak signal of the macromolecules and interfering features with a high signal-to-noise ratio, which are often addressed by time-consuming, subjective manual curation of results. To improve the detection performance we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信