Crystal structure reveals the hydrophilic R1 group impairs NDM-1–ligand binding via water penetration at L3

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiangrui Shi , Huijuan Yang , Yujie Dai , Hui Zhao , Yuhang Li , Yanxi Li , Xin Zhou , Hailong Yan , Qinghua Zhang , Wei Liu
{"title":"Crystal structure reveals the hydrophilic R1 group impairs NDM-1–ligand binding via water penetration at L3","authors":"Xiangrui Shi ,&nbsp;Huijuan Yang ,&nbsp;Yujie Dai ,&nbsp;Hui Zhao ,&nbsp;Yuhang Li ,&nbsp;Yanxi Li ,&nbsp;Xin Zhou ,&nbsp;Hailong Yan ,&nbsp;Qinghua Zhang ,&nbsp;Wei Liu","doi":"10.1016/j.yjsbx.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>The global spread of New Delhi metallo-β-lactamases (NDMs) has exacerbated the antimicrobial resistance crisis. This study resolved the crystal structure of NDM-1 hydrolyzing amoxicillin for the first time, revealed that the hydroxyl group in the R1 moiety of amoxicillin anchors a key water molecule (Wat1) via hydrogen bond, inducing a conformational shift in Met67 (average displacement of 3.8 Å compared to its position in complexes with ampicillin, penicillin G, and penicillin V) and impairing the hydrophobic interaction between the loop 3 and the substrate. Molecular dynamics simulations confirmed that the π-π stacking contact time between amoxicillin and the L3 critical residue Phe70 decreased to 4.3 % (ampicillin: 12.3 %), with a binding energy reduction of 10.5 kcal/mol. Steady-state kinetics showed that amoxicillin exhibited a 2.2-fold higher <em>K</em><sub>m</sub> and a 5.2-fold higher <em>k</em><sub>cat</sub> compared to ampicillin, demonstrating that hydrophilic R1 groups impair enzyme-substrate binding. This work demonstrates the essential role of hydrophobic interactions in L3-mediated substrate binding and provides a novel strategy for designing L3-targeted NDM-1 inhibitors: maximize hydrophobicity and minimize polar surface area in the L3 contact region to block water penetration, thereby stabilizing the inhibitor-L3 interaction.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"12 ","pages":"Article 100133"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152425000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The global spread of New Delhi metallo-β-lactamases (NDMs) has exacerbated the antimicrobial resistance crisis. This study resolved the crystal structure of NDM-1 hydrolyzing amoxicillin for the first time, revealed that the hydroxyl group in the R1 moiety of amoxicillin anchors a key water molecule (Wat1) via hydrogen bond, inducing a conformational shift in Met67 (average displacement of 3.8 Å compared to its position in complexes with ampicillin, penicillin G, and penicillin V) and impairing the hydrophobic interaction between the loop 3 and the substrate. Molecular dynamics simulations confirmed that the π-π stacking contact time between amoxicillin and the L3 critical residue Phe70 decreased to 4.3 % (ampicillin: 12.3 %), with a binding energy reduction of 10.5 kcal/mol. Steady-state kinetics showed that amoxicillin exhibited a 2.2-fold higher Km and a 5.2-fold higher kcat compared to ampicillin, demonstrating that hydrophilic R1 groups impair enzyme-substrate binding. This work demonstrates the essential role of hydrophobic interactions in L3-mediated substrate binding and provides a novel strategy for designing L3-targeted NDM-1 inhibitors: maximize hydrophobicity and minimize polar surface area in the L3 contact region to block water penetration, thereby stabilizing the inhibitor-L3 interaction.

Abstract Image

晶体结构显示亲水性R1基团通过水渗透在L3破坏ndm -1配体的结合
新德里金属β-内酰胺酶(ndm)的全球传播加剧了抗菌素耐药性危机。本研究首次解决了NDM-1水解阿莫西林的晶体结构,揭示了阿莫西林R1部分的羟基通过氢键锚定一个关键水分子(Wat1),引起Met67的构象移位(与氨苄西林、青霉素G和青霉素V配合物的位置相比,其平均位移为3.8 Å),并损害了环3与底物之间的疏水相互作用。分子动力学模拟证实,阿莫西林与L3临界残基Phe70之间的π-π堆积接触时间降低至4.3%(氨苄西林:12.3%),结合能降低10.5 kcal/mol。稳态动力学表明,与氨苄西林相比,阿莫西林的Km和kcat分别高出2.2倍和5.2倍,这表明亲水性R1基团损害了酶与底物的结合。这项工作证明了疏水相互作用在L3介导的底物结合中的重要作用,并为设计L3靶向NDM-1抑制剂提供了一种新的策略:最大化疏水性并最小化L3接触区域的极性表面积以阻止水渗透,从而稳定抑制剂-L3相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信