物理与天体物理最新文献

筛选
英文 中文
Impact of electron velocity modulation on microwave power performance for AlGaN/GaN HFETs 电子速度调制对氮化铝/氮化镓高频晶体管微波功率性能的影响
IF 4 2区 物理与天体物理
Applied Physics Letters Pub Date : 2024-11-13 DOI: 10.1063/5.0222095
Mingyan Wang, Yuanjie Lv, Heng Zhou, Chao Liu, Peng Cui, Zhaojun Lin
{"title":"Impact of electron velocity modulation on microwave power performance for AlGaN/GaN HFETs","authors":"Mingyan Wang, Yuanjie Lv, Heng Zhou, Chao Liu, Peng Cui, Zhaojun Lin","doi":"10.1063/5.0222095","DOIUrl":"https://doi.org/10.1063/5.0222095","url":null,"abstract":"In this study, we demonstrate the effects of electron velocity modulation (Δve/ΔVgs) on the microwave power performance for AlGaN/GaN HFETs. In order to conduct the experiments, AlGaN/GaN HFETs with gate lengths ranging from 500 to 80 nm were fabricated. Electron transport was investigated by coupling a drift-diffusion solver with the Monte Carlo method. As gate lengths (Lg) varied from 500 to 200 nm, the increased polarization Coulomb field scattering led to an increase in Δve/ΔVgs and the stronger electric field (E) increased ve and enhanced the transconductance (gm), which in turn led to a greater power gain (Gp) in the HFETs. The higher power output (Pout) was also due to the increased ve that boosted the saturated output current (Ids,sat). The unique phenomenon that occurs from electron velocity modulation of AlGaN/GaN HFETs at electron densities (ns) < 3.42 × 1012cm−2 can be used as an effective mechanism to enhance the power gain of AlGaN/GaN HFETs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance comparison of the Shack-Hartmann and pyramid wavefront sensors with a laser guide star for 40 m telescopes 使用激光导星的沙克-哈特曼波前传感器和金字塔波前传感器的性能比较,用于 40 米望远镜
IF 6.5 2区 物理与天体物理
Astronomy & Astrophysics Pub Date : 2024-11-13 DOI: 10.1051/0004-6361/202451670
F. Oyarzún, C. Heritier, V. Chambouleyron, T. Fusco, P. Rouquette, B. Neichel
{"title":"Performance comparison of the Shack-Hartmann and pyramid wavefront sensors with a laser guide star for 40 m telescopes","authors":"F. Oyarzún, C. Heritier, V. Chambouleyron, T. Fusco, P. Rouquette, B. Neichel","doi":"10.1051/0004-6361/202451670","DOIUrl":"https://doi.org/10.1051/0004-6361/202451670","url":null,"abstract":"<i>Context<i/>. Upcoming giant segmented mirror telescopes will use laser guide stars (LGS) for their adaptive optics (AO) systems. Two options of wavefront sensors (WFSs) are the Shack-Hartmann wavefront sensor (SHWFS) and the pyramid wavefront sensor (PWFS).<i>Aims<i/>. In this paper, we compare the noise performance of the PWFS and the SHWFS. We aim to identify which of the two is best to use in the context of a single or tomographic configuration.<i>Methods<i/>. To compute the noise performance, we extended a noise model developed for the PWFS to be used with the SHWFS. To do this, we expressed the centroiding algorithm of the SHWFS as a matrix-vector multiplication, which allowed us to use the statistics of noise to compute its propagation through the AO loop. We validated the noise model with end-to-end simulations for telescopes of 8 and 16 m in diameter.<i>Results<i/>. For an AO system with only one WFS, we found that given the same number of subapertures, the PWFS outperforms the SHWFS. For a 40 m telescope, the limiting magnitude of the PWFS is around one magnitude higher than the SHWFS. When using multiple WFS and a generalized least-squares estimator to combine the signal, our model predicts that in a tomographic system, the SHWFS performs better than the PWFS (with a limiting magnitude that is higher by a 0.3 magnitude. When using sub-electron RON detectors for the PWFS, the performance quality is almost identical for the two WFSs.<i>Conclusions<i/>. We find that when using a single WFS with LGS, PWFS is a better alternative than the SH. For a tomographic system, both sensors would give roughly the same performance.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of decoupling and Rastall parameters on Krori–Barua and Tolman IV models generated by isotropization and complexity factor 去耦参数和拉斯托尔参数对等向性和复杂系数生成的 Krori-Barua 和 Tolman IV 模型的作用
IF 3.5 3区 物理与天体物理
Classical and Quantum Gravity Pub Date : 2024-11-13 DOI: 10.1088/1361-6382/ad8d9d
Tayyab Naseer and M Sharif
{"title":"Role of decoupling and Rastall parameters on Krori–Barua and Tolman IV models generated by isotropization and complexity factor","authors":"Tayyab Naseer and M Sharif","doi":"10.1088/1361-6382/ad8d9d","DOIUrl":"https://doi.org/10.1088/1361-6382/ad8d9d","url":null,"abstract":"We develop multiple analytical solutions to the Rastall field equations using a recently proposed scheme, named the gravitational decoupling. In order to do this, we assume a spherical distribution that possesses anisotropic pressure in its interior and extend it by incorporating an additional gravitating source through the corresponding Lagrangian density. Such addition in the initial fluid distribution leads to the complicated field equations which are then tackled by implementing the minimal geometric deformation. This execution divides these equations into two different systems, each corresponds to the original source. The first system representing initial source is solved by adopting Krori–Barua and Tolman IV spacetimes, while three different constraints are used to work out the other set. The constants engaged in the above two ansatz are calculated through the junction conditions. The developed models are further explored graphically in the interior of a star, say . Finally, we conclude our results to be physically feasible under the considered variation in both Rastall and decoupling parameters. It is important to mention here that the derived models can be viewed as idealized or toy models that serve as preliminary explorations within the framework of Rastall gravity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanogap-Induced Phase Control Reveals the Momentum of Light Inside the Dielectric Medium 纳米间隙诱导的相位控制揭示了介质内部的光动量
IF 7 1区 物理与天体物理
ACS Photonics Pub Date : 2024-11-13 DOI: 10.1021/acsphotonics.4c01388
Gopal Verma, Iver Brevik, Kavita Mehlawat, Wei Li
{"title":"Nanogap-Induced Phase Control Reveals the Momentum of Light Inside the Dielectric Medium","authors":"Gopal Verma, Iver Brevik, Kavita Mehlawat, Wei Li","doi":"10.1021/acsphotonics.4c01388","DOIUrl":"https://doi.org/10.1021/acsphotonics.4c01388","url":null,"abstract":"The deflection of a submerged mirror due to light pressure was used to compare competing theories of light momentum inside a dielectric medium. In this case, a significant bottleneck is to find a mirror that reflects light with zero phase shift without requiring multiple sets of metamaterial mirrors, as conventional mirrors reflect light with a 180° phase shift, demonstrating (formally, as we shall see) the Minkowski momentum. Introducing a nanometric gap between the mirror and the convex lens can vary the phase angle from 0 to 180°, covering the momentum range between the Abraham and Minkowski values (2ℏω<sub>0</sub>/<i>nc</i>, 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>). Our study used interferometry to measure the deflection of a submerged, partially metallic-coated vertical cantilever caused by radiation pressure with nanometric precision. Our results showed that light momentum within a dielectric follows Minkowski’s form (2<i>n</i>ℏω<sub>0</sub>/<i>c</i>) for conventional mirrors. However, with a nanogap between the convex lens and a vertically suspended fiber, the momentum transferred to a submerged mirror varied from 2ℏω<sub>0</sub>/<i>nc</i> to 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>, depending on the mirror’s phase angle. This approach takes an intriguing step illustrating the rivaling theory of light momentum in a medium: numerical simulations based upon the formula derived by [<contrib-group><span>Mansuripur, M.</span></contrib-group> <cite><i>Phys. Rev. A</i></cite> <span>2012</span>, <em>85</em>, <elocation-id>023807</elocation-id>]agree with our experimental results. These basic results imply promising applications in microfluidics and optofluidics.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions 环境条件下同位素富集的 6H-28SiC 中 NV 缺陷的相干性
IF 4 2区 物理与天体物理
Applied Physics Letters Pub Date : 2024-11-13 DOI: 10.1063/5.0222098
Fadis Murzakhanov, Georgy Mamin, Margarita Sadovnikova, Evgeniy Mokhov, Sergey Nagalyuk, Marat Gafurov, Victor Soltamov
{"title":"Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions","authors":"Fadis Murzakhanov, Georgy Mamin, Margarita Sadovnikova, Evgeniy Mokhov, Sergey Nagalyuk, Marat Gafurov, Victor Soltamov","doi":"10.1063/5.0222098","DOIUrl":"https://doi.org/10.1063/5.0222098","url":null,"abstract":"The unique spin-optical properties of NV defects in SiC, coupled with silicon carbide's advanced technology compared to diamond, make them a promising candidate for quantum technology applications. In this study, using photoinduced pulse ESR at 94 GHz (3.4 T), we reveal the room temperature spin coherence of NV defects in 6H-28SiC, purified to reduce 29Si concentration to ≈1%, four times below its natural level. We demonstrate room temperature (300 K) Hahn-echo coherence time T2 = 23.6 μs, spin–lattice relaxation time T1 = 0.1 ms, and coherent control over optically polarized NV spin states through Rabi nutation experiments. We reveal long inhomogeneous dephasing time T2* = 1.5 μs, which is about five times greater than that measured for NV defects in SiC with natural isotopic content. Our observations highlight again the potential of NV defects in 6H-28SiC, which exhibit near-infrared optical excitation and emission properties compatible with O-band fiber optics, as promising candidates for applications in quantum sensing, communication, and computation.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Symmetries and Energy-Momentum Conservation in Uniform Spacetime Metamaterials 均匀时空超材料中的时空对称性与能量动量守恒
IF 7 1区 物理与天体物理
ACS Photonics Pub Date : 2024-11-13 DOI: 10.1021/acsphotonics.4c01496
Iñigo Liberal, Antonio Ganfornina-Andrades, J. Enrique Vázquez-Lozano
{"title":"Spatiotemporal Symmetries and Energy-Momentum Conservation in Uniform Spacetime Metamaterials","authors":"Iñigo Liberal, Antonio Ganfornina-Andrades, J. Enrique Vázquez-Lozano","doi":"10.1021/acsphotonics.4c01496","DOIUrl":"https://doi.org/10.1021/acsphotonics.4c01496","url":null,"abstract":"Spacetime metamaterials are opening new regimes of light–matter interactions based on the breaking of temporal and spatial symmetries, as well as intriguing concepts associated with synthetic motion. In this work, we investigate the continuous spatiotemporal translation symmetry of spacetime metamaterials with uniform modulation velocity. Using Noether’s theorem, we demonstrate that such symmetry entails the conservation of the energy momentum. We highlight how energy-momentum conservation imposes constraints on the range of allowed light–matter interactions within spacetime metamaterials, as illustrated with examples of the collision of electromagnetic and modulation pulses. Furthermore, we discuss the similarities and differences between the conservation of energy-momentum and relativistic effects. We believe that our work provides a step forward in clarifying the fundamental theory underlying spacetime metamaterials.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transverse Quantum Superfluids 横向量子超流体
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2024-11-13 DOI: 10.1146/annurev-conmatphys-042924-103908
Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov
{"title":"Transverse Quantum Superfluids","authors":"Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov","doi":"10.1146/annurev-conmatphys-042924-103908","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-042924-103908","url":null,"abstract":"Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in <jats:sup>4</jats:sup>He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at <jats:italic>T</jats:italic> = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":22.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimised use of interferometry, spectroscopy, and stellar atmosphere models for determining the fundamental parameters of stars 优化使用干涉测量法、光谱学和恒星大气模型来确定恒星的基本参数
IF 6.5 2区 物理与天体物理
Astronomy & Astrophysics Pub Date : 2024-11-13 DOI: 10.1051/0004-6361/202450105
N. Ebrahimkutty, M. R. Gent, D. Mourard, A. Domiciano de Souza, M. Bergemann, T. Morel, G. Morello, N. Nardetto, B. Plez
{"title":"Optimised use of interferometry, spectroscopy, and stellar atmosphere models for determining the fundamental parameters of stars","authors":"N. Ebrahimkutty, M. R. Gent, D. Mourard, A. Domiciano de Souza, M. Bergemann, T. Morel, G. Morello, N. Nardetto, B. Plez","doi":"10.1051/0004-6361/202450105","DOIUrl":"https://doi.org/10.1051/0004-6361/202450105","url":null,"abstract":"<i>Context<i/>. Thanks to recent progress in the field of optical interferometry, instrument sensitivities have now reached the level achieved in the domain of new space missions dedicated to exoplanet and stellar studies. Combining interferometry with other observational approaches enables the determination of stellar parameters and helps improve our understanding of stellar physics.<i>Aims<i/>. In this paper, we aim to demonstrate a new way of using stellar atmosphere models for a joint interpretation of spectroscopic and interferometric observations.<i>Methods<i/>. Starting from a discrete grid of one-dimensional (1D) stellar atmosphere models, we developed a training algorithm, based on an artificial neural network, capable of estimating the spectrum and intensity profile of a star over a range of wavelengths and viewing angles. A minimisation algorithm based on the trained function allowed for the simultaneous fitting of the observational spectrum and interferometric complex visibilities. As a result, coherent and precise stellar parameters can be extracted.<i>Results<i/>. We show the ability of the trained function to match the modelled intensity profiles of stars in the effective temperature range of 4500–7000 K and surface gravity range of 3 to 5 dex, with a relative precision to the model that is better than 0.05%. Using simulated interferometric data and actual spectroscopic measurements, we demonstrated the performance of our algorithm on a sample of five benchmark stars. Using this method, we achieved an accuracy within 0.5% for the angular diameter, radius, and surface gravity, and within 20 K for the effective temperature.<i>Conclusions<i/>. This paper demonstrates a new method of using interferometric data combined with spectroscopic observations. This approach offers an improved determination of the radius, effective temperature, and surface gravity of stars.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible magnetoelectric systems: Types, principles, materials, preparation and application 柔性磁电系统:类型、原理、材料、制备和应用
IF 15 1区 物理与天体物理
Applied physics reviews Pub Date : 2024-11-13 DOI: 10.1063/5.0220902
Shanfei Zhang, Zhuofan Li, Yizhuo Xu, Bin Su
{"title":"Flexible magnetoelectric systems: Types, principles, materials, preparation and application","authors":"Shanfei Zhang, Zhuofan Li, Yizhuo Xu, Bin Su","doi":"10.1063/5.0220902","DOIUrl":"https://doi.org/10.1063/5.0220902","url":null,"abstract":"Recently, the rapid development of flexible electronic materials and devices has profoundly influenced various aspects of social development. Flexible magnetoelectric systems (FMESs), leveraging magnetoelectric coupling, hold vast potential applications in the fields of flexible sensing, memory storage, biomedicine, energy harvesting, and soft robotics. Consequently, they have emerged as a significant branch within the realm of flexible electronic devices. According to its working principle, FMES are divided into three categories: FMES based on magnetodeformation and piezoelectric effects, FMES based on giant magnetoresistive effect, and FMES based on electromagnetic induction. Although some articles have reviewed the first two types of FMES, there is a lack of systematic introduction of the FMES based on electromagnetic induction in existing studies, especially the development history and research status of the three types of FMES. Therefore, this paper systematically reviews the development history and research status of these three kinds of FMES and reveals the working principle and mode of the flexible magnetoelectric system from the perspective of the force-electricity-magnetism coupling mode. In addition, the material selection criteria, device manufacturing methods, and application fields of the FMES are also introduced. Finally, this review delves into the challenges and opportunities confronting the development of FMES, exploring the future development directions. This review aims to establish a theoretical foundation and provide methodological strategies for future research on FMES. It is anticipated to promptly address the current gap in this research field and facilitate the development of the flexible electronic family.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":null,"pages":null},"PeriodicalIF":15.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trainability barriers and opportunities in quantum generative modeling 量子生成模型的可训练性障碍与机遇
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-13 DOI: 10.1038/s41534-024-00902-0
Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes
{"title":"Trainability barriers and opportunities in quantum generative modeling","authors":"Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes","doi":"10.1038/s41534-024-00902-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00902-0","url":null,"abstract":"<p>Quantum generative models provide inherently efficient sampling strategies and thus show promise for achieving an advantage using quantum hardware. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using quantum generative models with explicit losses such as the KL divergence leads to a new flavor of barren plateaus. In contrast, the implicit Maximum Mean Discrepancy loss can be viewed as the expectation value of an observable that is either low-bodied and provably trainable, or global and untrainable depending on the choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish high-order correlations in the target data, while some quantum loss estimation strategies can. We validate our findings by comparing different loss functions for modeling data from High-Energy-Physics.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信