{"title":"Application of Renewable Energy in Green Buildings and Energy Consumption Optimization","authors":"Fangyan Bai, Jianrun Xing","doi":"10.4108/ew.5830","DOIUrl":"https://doi.org/10.4108/ew.5830","url":null,"abstract":"INTRODUCTION: With the increasing global awareness of sustainable development and environmental protection, green building has become one of the important development directions in the construction industry. The application of sustainable type energy in the construction industry is of great significance in reducing building energy consumption and environmental pollution. This study aims to explore the application of sustainable types of energy and conduct research on energy consumption optimization. OBJECTIVE: The aim of this study is to analyze the current situation of the application of sustainable types of energy in the construction industry, to explore its impact on the energy consumption of buildings, and to propose corresponding optimization strategies in order to achieve the goal of sustainable development of green buildings in China. METHODS: This study adopts a combination of literature review and case study; firstly, a literature review on the application of sustainable types of energy, sorting out its technical characteristics and application effects; then, several typical cases are selected to analyze its energy application and energy consumption in buildings; finally, relevant strategies and suggestions for optimizing the energy consumption are put forward by combining the results of the literature review and the case study. RESULTS: Through the literature review and case analysis, it is found that sustainable types of energy, such as solar energy and wind energy, have been widely used in buildings and achieved certain energy-saving effects. However, there are also some problems, such as inefficient energy utilization and high cost. To address these problems, this study proposes a series of optimization strategies, including suggestions for optimizing energy system design, improving energy utilization efficiency, and reducing energy costs. CONCLUSION: This study concludes that the application of sustainable types of energy in green buildings is an important way to optimize building energy consumption and sustainable development. Through measures such as optimizing energy system design and improving energy utilization efficiency, building energy consumption can be further reduced, environmental pollution can be reduced, and the development of the construction industry can be promoted. However, further research and practice are still needed to continuously improve relevant technologies and policies to promote the application and development of sustainable types of energy in buildings. ","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"123 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141017355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Synergistic Effect of Energy Efficiency Improvement and Vocational Competence Development","authors":"Chao Yang, Milagros L. Tabasa","doi":"10.4108/ew.5851","DOIUrl":"https://doi.org/10.4108/ew.5851","url":null,"abstract":"INTRODUCTION: Growing global energy demand and constant competition for energy resources have made energy efficiency a focus of international attention. At the same time, occupational competency development is crucial for sustained individual and overall economic growth.OBJECTIVES: This study explores the synergistic effects of energy efficiency improvement and occupational competence development to inform policy-making and business strategies.METHODS: A literature review summarises relevant theories and research progress on energy efficiency improvement and occupational capability development. Then, the relationship between energy efficiency improvement and vocational ability development was analyzed in depth using econometric models and a large amount of empirical data.RESULTS: There is a significant positive association between energy efficiency improvement and vocational ability development. Specifically, improving energy efficiency not only reduces the cost of energy consumption and enhances productivity but also helps promote technological innovation and industrial upgrading, which in turn enhances the level of occupational ability of workers. In turn, improving occupational ability further encourages technological innovation and productivity in enterprises, forming a virtuous circle and promoting the sustainable development of the economy.CONCLUSION: This study reveals the synergistic effect between energy efficiency improvement and vocational competence development, emphasizing the critical role of energy efficiency improvement and vocational competence development in promoting economic growth and achieving sustainable development. ","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141015504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingming Zhao, Sheng Huang, Qianqian Cai, FanQin Zeng, Yongzhi Cai
{"title":"Research on Distributed Renewable Energy Power Measurement and Operation Control Based on Cloud-Edge Collaboration","authors":"Jingming Zhao, Sheng Huang, Qianqian Cai, FanQin Zeng, Yongzhi Cai","doi":"10.4108/ew.5520","DOIUrl":"https://doi.org/10.4108/ew.5520","url":null,"abstract":"This paper examines how we can combine two big trends in solar energy: the spread of solar panels and wind turbines to renew the power grid, and cloud and edge computing technology to improve the way the grid works. Our study introduces a new strategy that is based on a means to exploit the power of cloud computing’s big data handling ability, together with the capacity of edge computing to provide real-time data processing and decision making. The method is designed to address major challenges in renewables systems making the system bigger and more reliable, and cutting the time delays in deciding how the system should respond. These are the kinds of changes that will be necessary so that we can blend solar and wind power into our current power grid, whether we are ready to say goodbye to coal or natural gas power. Our paper presents a way in which we believe that renewables systems can work more smoothly and effectively. This includes making it easier to measure how much power is being generated, to control these systems so that they function much like traditional power plants, and hence, to allow renewable energy to be part of a reliable and efficient part of our electricity supply. These are all crucial steps in using technology to make more of the green power from the sun – which we must do for our energy usage to be more earth friendly.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140219662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction and Research on Cloud-edge Collaborative Power Measurement and Security Model","authors":"Jiajia Huang, Ying Sun, Xiao Jiang, Youpeng Huang, DongXu Zhou","doi":"10.4108/ew.5522","DOIUrl":"https://doi.org/10.4108/ew.5522","url":null,"abstract":"Accurate power consumption assessment is of critical importance in the fast-evolving world of cloud and edge computing. These technologies enable rapid data processing and storage but they also require huge amounts of energy. This energy requirement directly impacts operational costs, as well as environmental responsibility. We are conducting research to develop a specialized cloud-edge power measurement and security model. This model delivers reliable power usage data from these systems while maintaining security for the data they process and store. A combination of simulation-based analysis and real-world experimentation helped us to deliver these results. Monte Carlo based simulations produced power usage predictions under various conditions and Load Testing validated their real-world performance. A Threat Modeling-based security study identified potential vulnerabilities and suggested protection protocols. A collaborative approach enhances power measurements accuracy and encourages secure operation of the combined cloud-edge systems. By fusing these metrics, a more efficient and secure operation of computing resources becomes possible. This research underscores the critical importance of developing advanced techniques for power metering and security in cloud-edge computing systems. Future research may focus on both expanding the model’s use to an array of larger, more complex networks, as well as the inclusion of AI driven predictive analytics to amplify accuracy of power management.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140214987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flying Ad-Hoc Networks (FANETs): A Review","authors":"Tarandeep Kaur Bhatia, Sanya Gilhotra, Suraj Singh Bhandari, Radhika Suden","doi":"10.4108/ew.5489","DOIUrl":"https://doi.org/10.4108/ew.5489","url":null,"abstract":"INTRODUCTION: FANETs are a type of wireless communication network consisting of Unmanned Aerial Vehicles (UAVs) or drones that work collaboratively to process data and attain optimal results. These networks have achieved significant attention due to their potential applications in diverse engineering fields. The paper provides a comprehensive analysis of FANET, covering various aspects related to its classification, architecture, communication types, mobility models, challenges, characteristics, and design. It also discusses the importance of routing protocols and topology in FANETs. Furthermore, this paper identifies and presents open issues and challenges in the field of FANETs, urging researchers to focus on exploring and addressing these essential parameters and research areas. \u0000OBJECTIVES: This paper will aims to promote further investigation and advancement in the field of FANETs and similar networks, enabling researchers to explore and overcome the challenges to unleash the full potential of these UAV-based ad-hoc networks shortly. \u0000METHODS: The data used in this paper was gathered from various research papers. A brief comparison among FANETs, MANETs, and VANETs has been shown and highlighted the main points. This paper also elaborates the general architecture, mobility models, routing, routing protocols in FANETs. \u0000RESULTS: It was discovered that the use of both deterministic and probabilistic techniques is suggested to enhance the performance and efficiency of FANETs. By combining these methods, the paper suggests that better results can be achieved in terms of network reliability, adaptability, and overall performance. \u0000CONCLUSION: This paper discusses the importance of routing protocols and topology in FANETs. Furthermore, this paper identifies and presents open issues and challenges in the field of FANETs, urging researchers to focus on exploring and addressing these essential parameters and research areas.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"79 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140224011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Zhang, Huakun Que, Xiashan Feng, Xiaofeng Feng, Xiling Tang
{"title":"Research on Improvement Calculation Method of Grid Power Losses Based on New Energy Access Model","authors":"Jun Zhang, Huakun Que, Xiashan Feng, Xiaofeng Feng, Xiling Tang","doi":"10.4108/ew.5487","DOIUrl":"https://doi.org/10.4108/ew.5487","url":null,"abstract":"This research presents an improved calculation method for grid power losses, particularly focusing on the challenges posed by new energy access models. With the integration of electric vehicles and the rise of data centers, the demand for electrical energy has surged, leading to increased strain on grid stations and subsequent power losses. The proposed model aimed at reducing these power losses, while also examining existing systems to mitigate and analyze such issues. A significant contribution of this work is the application of the Random Forest machine learning algorithm, which enables efficient and accurate power flow calculations essential for optimizing grid performance. The proposed method is expected to enhance the grid’s ability to handle future energy demands and contribute to the sustainable development of electrical energy systems.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"80 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140224138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Huang, Yafeng Li, Liang Ma, Bingqiang Mao, Lin Zhang, Jingli Yang, Haishan Wang, Yanguo Sun, Xiaochuan Zhao, Muhao Lv
{"title":"New Approach to SCADA System Screen Configuration Based on the Model of Oil and Gas Pipeline Network","authors":"He Huang, Yafeng Li, Liang Ma, Bingqiang Mao, Lin Zhang, Jingli Yang, Haishan Wang, Yanguo Sun, Xiaochuan Zhao, Muhao Lv","doi":"10.4108/ew.5247","DOIUrl":"https://doi.org/10.4108/ew.5247","url":null,"abstract":"INTRODUCTION: With the continuous progress of science and technology, the monitoring and control of oil and gas pipeline networks have become more and more critical; SCADA systems, as a kind of technology widely used in industrial control, play a key role. The screen configuration of the SCADA system is the core part of its user interface, which is directly related to the operator's mastery of the status of the pipeline network. In order to improve the monitoring efficiency and reduce the operation risk, this study is devoted to exploring a new method of SCADA system screen configuration based on the oil and gas pipeline network model.PURPOSE: The purpose of this study is to develop an innovative SCADA system screen configuration method to present the operating status of the oil and gas pipeline network more intuitively and efficiently. The design based on the pipeline network model aims to enhance the operators' understanding of essential information, such as pipeline network topology, fluid flow, etc., so as to make monitoring and control more intelligent.METHODS: The study adopts a new method of SCADA system screen configuration based on the oil and gas pipeline network model. First, the topology, sensor data, and control nodes of the oil and gas pipeline network are comprehensively modelled. Then, through the design principle of human-computer interaction, the modelling results are integrated into the screen configuration of the SCADA system to realize the intuitive presentation of information. At the same time, advanced visualization technology is introduced so that the operators can understand the real-time changes in the pipe network status more clearly.RESULTS: After experimental verification, the new method shows significant advantages in oil and gas pipeline network monitoring. The operators can recognize the abnormalities of the pipeline network more quickly and accurately through the SCADA system screen configuration, which improves the efficiency of troubleshooting and treatment. The visualized interface design makes the operation more intuitive and reduces the possibility of operating errors, thus improving the safety and reliability of the pipeline network.CONCLUSION: The new method of SCADA system screen configuration based on the oil and gas pipeline network model has achieved significant results in improving monitoring efficiency and reducing operational risks. Through a more intuitive and intelligent interface design, operators can have a more comprehensive understanding of the operating status of the pipeline network, which provides practical support for rapid response and decision-making. This approach introduces new ideas to the field of oil and gas pipeline network monitoring, which is of positive significance for improving the overall performance of the system. Future work can be carried out to optimize the interface design further and expand the applicable scenarios.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140230070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OPC UA Application Study in Oil and Gas Pipeline Network Monitoring Data Forwarding","authors":"Bingqiang Mao, Guocheng Qi, Liang Mi, Feng Yan, Yulong Xian, Peng Chen, Chen Li, Xiaochuan Zhao, Yanguo Sun, Wenyu Pei","doi":"10.4108/ew.5245","DOIUrl":"https://doi.org/10.4108/ew.5245","url":null,"abstract":"INTRODUCTION: With the continuous development of oil and gas pipeline network monitoring and control technology, the need for data transmission and communication is becoming more and more prominent. In this context, OPC UA has attracted wide attention. This study aims to explore the application of OPC UA in data forwarding for oil and gas pipeline network monitoring in order to improve the efficiency, reliability and security of data transmission.PURPOSE: The purpose of this study is to evaluate the applicability of OPC UA in oil and gas pipeline network monitoring and to verify its performance in data forwarding through empirical studies. By gaining an in-depth understanding of the characteristics of OPC UA, it aims to provide a more advanced and efficient monitoring data transfer solution for the oil and gas industry.METHOD: The study adopts a combination of field monitoring and laboratory simulation. First, the essential characteristics and requirements of monitoring data in oil and gas pipeline networks were collected. Subsequently, a monitoring system with OPC UA as the communication protocol was established and field tested. In the laboratory environment, data transmission scenarios under different working conditions were simulated, and the performance of OPC UA under different conditions was analyzed.RESULT: The field monitoring results show that the data transmission efficiency is significantly improved by using OPC UA as the communication protocol for data forwarding in oil and gas pipeline network monitoring. Meanwhile, the system performs well in different environments with high reliability and security. The laboratory simulation results further verify the stability and adaptability of OPC UA under complex working conditions.CONCLUSION: OPC UA is an effective communication protocol that can meet the data transmission requirements for oil and gas pipeline network monitoring. Its efficient, reliable, and secure characteristics make it an ideal choice for improving the communication performance of monitoring systems in the oil and gas industry. The empirical results of this study provide reliable technical support for the oil and gas industry in the field of data transmission and a vital reference for the optimization and upgrading of monitoring systems in the future. ","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"6 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140230500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Energy International E-commerce Innovation Strategy Based on Global Value Chain","authors":"Qing Bai","doi":"10.4108/ew.5281","DOIUrl":"https://doi.org/10.4108/ew.5281","url":null,"abstract":"INTRODUCTION: With the drive of globalization and digitalization, the global energy industry is undergoing a brand new transformation. Energy international e-commerce is an emerging paradigm that continues to grow within the global value chain framework, bringing significant changes and opportunities to the energy sector.OBJECTIVES: This research examines the role of international e-commerce in advancing the energy industry's growth, maximizing the distribution of resources worldwide, and boosting market competitiveness. It does this by analyzing the innovation strategy of the sector based on the global value chain.METHODS: The basic concepts and characteristics of global value chain theory and energy international e-commerce are analyzed, and then the innovation strategies in technological innovation, international cooperation, supply chain optimization, and data-driven are explored in depth, and empirical analyses of these strategies are conducted through case studies.RESULTS: It is found that technological innovation not only promotes the development of international energy e-commerce but also gives rise to new business models; international cooperation and supply chain optimization effectively optimize the global resource allocation and market layout; and data-driven market expansion strategy improves the market competitiveness of enterprises. The case study results further validate the effectiveness and practicality of these strategies. CONCLUSION: Energy international e-commerce innovation strategies based on GVCs play an essential role in promoting the transformation and upgrading of the energy industry, optimizing resource allocation efficiency, and enhancing enterprises' market competitiveness. ","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"35 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140231722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization and privacy protection of microgrid power trading system based on attribute encryption technology","authors":"Kangqian Huang, Xin Hu, Rui Zhou, Dejun Xiang","doi":"10.4108/ew.5431","DOIUrl":"https://doi.org/10.4108/ew.5431","url":null,"abstract":"This paper presents an effective technique and approach to deal with the dual challenges of performance optimization and privacy protection in microgrid power trading systems (MPTS) by utilizing attribute encryption technology. By embedding advanced cryptographic techniques into the operational substrate of microgrids, we introduce a novel approach to dramatically enhance the efficiency of energy distribution, while guaranteeing the privacy protection and integrity of participant data. The core objective of this technique is the application of attribute-based encryption (ABE), a method that offers fine-grained access control, ensuring sensitive information is made available only to eligible users based on their attributes, rather than their identities. In doing so, it meets the important requirement of securing data, without impairing the overall productivity of a power trading system. This paper presents a novel technique of ABE in the domain of MPTS, but also quantifies, through extensive theoretical analysis and simulations, how this integration leads to superior energy resource allocation and lower operational costs.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"23 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140240379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}