Nadya Amalia Juana, Junet Kaswoto, S. Sugiman, A. Hidayat
{"title":"The Learning Trajectory of Set Concept Using Realistic Mathematics Education (RME)","authors":"Nadya Amalia Juana, Junet Kaswoto, S. Sugiman, A. Hidayat","doi":"10.22342/jpm.17.1.19077.89-102","DOIUrl":"https://doi.org/10.22342/jpm.17.1.19077.89-102","url":null,"abstract":"Learning trajectory of set is a learning path to get concept of set. However, several teachers did not combine methods, approaches, and ideas in their practical deliveries. This situation becomes a concern for teachers to handle since it will affect the rule without reason so that the accepted concept will not last long in students’ memory. This study aim to describe the learning trajectory using RME models to construct the concept of set. Hypothetical learning trajectory (HLT) was designed using a qualitative method with the realistic mathematics education (RME) of Gravemeijer model as the activity stage begin from preparing for the experiment, pilot experiment, teaching experiment and retrospective analysis. The designed HLT consisted of an objective, activity, and conjecture. This study achieved an understanding of the set concept with applying RME design. By providing examples of contextual mathematics that take place in the learning environment, these outcomes were achieved. Then using media like set cards to model mathematics so that students can advance their own knowledge to the level of formal mathematics. Therefore, the RME-based HLT design can be a solution to obtain the concept of set, primarily in domain definition and set notation to produce a learning trajectory.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"152 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74279580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ethnomathematical Study on Indigenous Fish Trap: Example from Kijang, Bintan Regency","authors":"Febrian Febrian, Puji Astuti, S. Susanti","doi":"10.22342/jpm.17.1.18787.21-36","DOIUrl":"https://doi.org/10.22342/jpm.17.1.18787.21-36","url":null,"abstract":"The continuous exploration of mathematics as a human activity triggers the need to research ethnomathematics. This study aimed to identify ethnomathematics in the manufacture of indigenous fish traps (Bubu) from Bintan Regency. This ethnography study uses direct observation, interviews, and documentation. The researcher acts as the main instrument. The data were analyzed using the Spradley analysis technique, namely domain, taxonomic, componential, and cultural theme analysis. Data reduction, data presentation, and conclusions were carried out for each analysis. The results show that there are mathematical activities in designing, counting, and measuring length dimensions in Bubu's making. In these activities, there are mathematical concepts, including three-dimensional figures, the net of three-dimensional figures, curves, odd numbers, sequences with their attributes, bilateral symmetry, symmetry axes, figurative numbers, the congruence of plane figures, and length measurements with non-standardized units. These results showed that the Bubu maker already had a geometric sense through the symmetrical concept that became the basis for two activities such as counting and measuring, similar to the results of ethnomathematical research on the Yupiaq Eskimo community in Alaska and the Carolina Islanders in Micronesia. This study provides ideas to utilize everyday phenomena in teaching mathematics as a starting point prior to learning mathematics more formally.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91259710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of PISA-like Activities using the Inquiry-based Learning Model and the Context of Religious Holidays during the Pandemic","authors":"Sisca Puspita Sepriliani, Z. Zulkardi, S. Somakim","doi":"10.22342/jpm.17.1.17765.37-54","DOIUrl":"https://doi.org/10.22342/jpm.17.1.17765.37-54","url":null,"abstract":"This research aims to develop a PISA-type content quantity that uses the context of religious holidays during the pandemic that is valid, practical, and potentially affects mathematical literacy skills. This research uses development research with two stages: preliminary and formative evaluation. This research also uses Inquiry-Based Learning (IBL) model in the learning process. This study involved eighth-grade students aged 13-15 years of various abilities. Data collection and analysis techniques were documentation, walkthroughs, observation, interviews, and tests. The research was carried out offline and online (Zoom and WhatsApp Group (WAG)). In this study, sharing activities were produced as well as a PISA-type jumping task with content quantity characteristics in the context of religious holiday during the pandemic by the PISA 2022 framework where what needs to be considered are mathematical literacy skills and use of language that is by language standards that can be applied and well interpreted by the students. Based on the students' answers, it can be seen that the questions and activities are included in the practical category because they can be solved well by students. From the results, it can be concluded that the developed PISA-like numeracy and activity has a potential effect on mathematical literacy skills and life in the context of religious days during the pandemic. In addition, IBL model can improve students' communication skills in solving PISA-type math problems and activities.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88549697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Pramudiani, T. Herman, T. Turmudi, M. Dolk, Belinda Terlouw
{"title":"What Do Indonesian and Dutch Teachers Find Challenging When Implementing Realistic Mathematics Education?","authors":"P. Pramudiani, T. Herman, T. Turmudi, M. Dolk, Belinda Terlouw","doi":"10.22342/jpm.17.1.20097.103-120","DOIUrl":"https://doi.org/10.22342/jpm.17.1.20097.103-120","url":null,"abstract":"At the end of the sixties of last century, the development of Realistic Mathematics Education (RME) started in the Netherlands. At the beginning of this century, the Indonesian adaptation of RME, Pendidikan Matematika Realistik Indonesia (PMRI), started. The implementation of RME / PMRI has proven to be challenging. In this research, a qualitative case study was used to investigate teachers’ perceptions and experiences in implementing RME/PMRI in their classes. Semi-structured interviews were conducted with several Dutch and Indonesian teachers who have joined the RME/PMRI training. We found similarities and differences between the two groups of teachers. Both groups of teachers understand the use of context as a starting point for students to construct mathematical understanding. The Dutch teachers considered the construction of interesting mathematical problems and the use of the guided-reinvention principle as the difficulties but motivated them to do more practice. Indonesian teachers mentioned that for them, the integration of mathematics with other subject areas for integrated thematic learning in the 2013 curriculum was their constraint but it was also a challenge for them to be more creative. These perspectives can become a reference for the development of a localized implementation of learning trajectory in classroom practices.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77360636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Rivai, A. Lestari, Nilam Permatasari Munir, Aswar Anas
{"title":"Students' Mathematical Literacy in Solving PISA Problems Observed by Learning Styles","authors":"Ahmad Rivai, A. Lestari, Nilam Permatasari Munir, Aswar Anas","doi":"10.22342/jpm.17.1.19905.121-134","DOIUrl":"https://doi.org/10.22342/jpm.17.1.19905.121-134","url":null,"abstract":"Mathematical literacy helps an individual recognize the role or use of mathematics in everyday life. One of the factors supporting mathematical literacy is the learning style of the student. This study aimed to describe the mathematical literacy of students in the context of SMP Negeri 1 Palopo based on their answers to PISA test questions by observing their learning styles. The subjects in this study were three eighth graders each representing visual, auditory, and kinesthetic learning styles. The data instruments used were a learning style questionnaire, a mathematical literacy test based on the 2012 PISA test draft, and an interview guide. The results of the learning style questionnaire were analyzed by referring to the indicators of the three learning styles under study, while the results of the PISA test were analyzed by referring to the indicators for each PISA level. The results of this study indicated that the visual student and the auditory student had mathematical literacy at level 3 as shown by their ability to connect and reflect things involved in interpretation and basic reasoning, while the kinesthetic student had mathematical literacy at level 4 as shown by their ability to build and communicate explanations and argumentation based on interpretations, arguments, and actions. Based on the research results, it is suggested that students be accustomed to working on PISA-like problems to improve their mathematical literacy.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80776314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Students’ Prior Knowledge as an Ontogenic Obstacle on the Topic of Ratio and Proportion","authors":"A. S. Wahyuningrum, D. Suryadi, T. Turmudi","doi":"10.22342/jpm.17.1.18866.55-68","DOIUrl":"https://doi.org/10.22342/jpm.17.1.18866.55-68","url":null,"abstract":"This study aims to investigate students’ prior knowledge as an obstacle when learning ratio and proportion concept. The study uses an interpretive paradigm which is part of Didactical Design Research. Eighth graders who had learned about ratio and proportion participated in this study. The analysis was carried out qualitatively based on the data from the students’ answers and interviews on their answers when solving ratio and proportion problems to identify learning obstacle, especially ontogenic obstacle regarding the students’ prior knowledge. The result of this study indicates that prior knowledge is one of the ontogenic obstacle in teaching and learning of ratio and proportion. It can be found from their learning experience in understanding the concept. In conclusion, investigating students' prior knowledge is essential for the effectiveness of teaching and learning of ratio and proportion. It is important to overcome ontogenic obstacles and to understand how to activate students’ prior knowledge using the right or appropriate methods when learning ratio and proportion.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84090443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalisasi Pertidaksamaan Euler untuk Membuktikan Planaritas Graf K_5 dan K_(3,3)","authors":"Emut Emut","doi":"10.21831/pythagoras.v17i2.51400","DOIUrl":"https://doi.org/10.21831/pythagoras.v17i2.51400","url":null,"abstract":"Kajian literatur tentang teori graf, khususnya planaritas suatu graf, yaitu menentukan apakah suatu graf itu termasuk graf planar atau bukan sudah banyak dibahas. Pada artikel ini pembahasan sedikit berbeda yaitu melakukan generalisasi atau perumuman teorema planaritas untuk dan teorema planaritas untuk Eksistensi perumuman ini penting karena dapat membuktikan planaritas dan sekaligus serta planaritas beberapa graf yang terkait. Pembuktian ketidakplanaran graf lengkap dan memberikan manfaat besar terhadap pengembangan teori planaritas graf dan memantapkan jaminan kebenaran pada terapannya. Urgensi pembuktiannya memiliki peran yang besar dalam menentukan planaritas graf-graf yang terkait, baik isomorfik atau subdivisi. Salah satu produk yang dihasilkan adalah teorema Kuratovski yang memberikan syarat perlu dan cukup suatu graf merupakan graf planar. Proses generalisasi dilakukan melalui kajian terhadap sifat-sifat khusus pada dan juga sifat-sifat khusus yang dimiliki . Sifat-sifat khusus tersebut diperumum sehingga diperoleh suatu sifat yang berlaku baik untuk maupun . Berdasarkan hasil generalisasi dari sifat tersebut, kemudian dikombinasikan dengan teorema pertidaksamaan Euler menghasilkan suatu teorema yaitu jika suatu graf planar terhubung, dan panjang sikel terpendeknya adalah , dengan maka berlaku £ Manfaat dari generalisasi ini dapat juga digunakan pada pembuktian dan secara langsung dan beberapa graf terkait secara mudah. Generalization of Euler's Inequality to Prove Planarity of Graphs K_5 and K_(3,3) AbstractThe study of literature on graph theory, especially the planarity of a graph, which is to determine whether a graph is a planar graph or a non-planar graph, has been widely discussed. This article's discussion is slightly different, namely generalizing the planarity theorem for and the planarity theorem for This generalization is important because it can prove the planarity of and and the planarity of several related graphs. Proving the unplanarity of complete graphs and provide significant benefits to developing graph planarity theory and strengthens the guarantee of truth in its application. The urgency of the proof has a significant role in determining the planarity of the related graphs, either isomorphic or subdivision. One of the products of its role is the birth of Kuratovski's theorem, which provides the necessary and sufficient conditions for a planar graph. The generalization process is carried out by studying the special properties of and . These unique properties are generalized to obtain a valid property for and . Based on the results of the generalization of these properties, then combined with the Euler inequality theorem and the resulting theorem is if is a planar graph, connected, and the length of the shortest cycle is k, with then applies £ (n-2). The benefits of this generalization can be used to prove and directly and some related graphs quickly. Penulisan artikel ini bertujuan untuk m","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"241 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83231666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mahmudi, S. Sugiman, K. Hernawati, Himmawati Puji Lestari
{"title":"Pengembangan Bahan Ajar Matematika Berbasis Kontekstual","authors":"A. Mahmudi, S. Sugiman, K. Hernawati, Himmawati Puji Lestari","doi":"10.21831/pythagoras.v17i2.26986","DOIUrl":"https://doi.org/10.21831/pythagoras.v17i2.26986","url":null,"abstract":"Penelitian pengembangan ini bertujuan untuk mengembangkan bahan ajar matematika berbasis kontekstual yang valid, praktis, dan efektif dengan model pengembangan ADDIE yang terdiri atas lima langkah pengembangan, yaitu Analysis, Design, Development, Implementation, dan Evaluation. Pengembangan bahan ajar ini penting untuk memfasilitas siswa dalam membangun pemahaman dan kebermaknaan dalam belajar matematika yang terjadi ketika siswa memahami keterkaitan antara suatu pengetahuan dengan pengetahuan lain atau dengan konteks kehidupan sehari-hari. Pembelajaran kontekstual dilaksanakan dengan strategi REACT yang terdiri atas lima aktivitas produktif, yaitu relating (mengaitkan materi pembelajaran dengan konteks), experiencing (melakukan eksplorasi untuk menemukan konsep atau pengetahuan), applying (menerapkan pengetahuan yang telah dikonstruksi), cooperating (bekerjasama untuk menyelesaikan masalah), dan transferring (menerapkan pengetahuan pada situasi atau masalah baru). Struktur penyajian bahan ajar ini diawali dengan penyajian konteks atau masalah yang sesuai dengan suatu konsep. Pemahaman dan penyelesaian terhadap masalah tersebut dijadikan dasar untuk membahas konsep-konsep matematis. Bahan ajar juga dilengkapi dengan berbagai soal-soal latihan yang berupa masalah kontekstual untuk memfasilitasi siswa untuk mengaplikasikan konsep. Insrumen penelitian ini adalah lembar kevalidan bahan ajar, angket kepraktisan bahan ajar, angket respon siswa terhadap bahan ajar, dan tes hasil belajar matematika. Hasil penelitian ini adalah bahan ajar matematika berbasis kontekstual yang valid, efektif, dan praktis.Development of contextual mathematics teaching material AbstractThis development research aims to develop mathematics contextual teaching materials that are valid, practical, and effective with the ADDIE development model consisting of five development steps, namely Analysis, Design, Development, Implementation, and Evaluation. The development of the teaching materials is important to facilitate students in building meaningfulness in learning mathematics. Meaningfulness can be obtained when students understand the relationship between concepts with other concepts and with the context in everyday life. Contextual learning is implemented with a REACT strategy consisting of five productive activities: relating, experiencing, applying, cooperating and transferring. The structure of contextual-based mathematical teaching materials begins with an exploration of the context or problem as a basis for constructing a mathematical concept. Teaching materials are also equipped with various problems of contextual problem solving as a concept application that has been constructed. The instrument of this research is the validation sheet, the instrument of the practicality of the teaching materials, the questionnaire of the students’ response to the teaching materials and the test of achievement. The results of this study are mathematics contextual materials that are vali","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83975196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afifah Hayati, L. Harini, Ambar Winarni, Nur’aini Muhassanah
{"title":"Teori Titik Tetap untuk Pemetaan (ψ,φ)_Ω-Kontraksi pada Ruang p-Metrik Modular Berorder","authors":"Afifah Hayati, L. Harini, Ambar Winarni, Nur’aini Muhassanah","doi":"10.21831/pythagoras.v17i2.52985","DOIUrl":"https://doi.org/10.21831/pythagoras.v17i2.52985","url":null,"abstract":"Penelitian ini bertujuan untuk memberikan definisi pemetaan (psi,varphi)_omega-kontraksi dalam ruang p-metrik modular, memberikan teorema titik tetap untuk pemetaan (psi,varphi)_omega-kontraksi pada ruang p-metrik modular, dan memberikan aplikasi dari teorema titik tetap tersebut. Penelitian ini menggunakan metode studi literatur. Hasil penelitian menunjukkan bahwa pemetaan (psi,varphi)_omega-kontraksi didefinisikan dalam ruang -metrik modular dengan memperumum pemetaan (psi,varphi)_omega-kontraksi dalam ruang p-metrik dan teorema titik tetap untuk pemetaan tersebut pada ruang p-metrik modular yang juga merupakan perumuman dari teorema titik tetap tersebut pada ruang p-metrik dengan penambahan beberapa sifat yang diasumsikan. Selain itu, hasil penilitian lainnya adalah aplikasi teorema titik tetap tersebut yang menjamin eksistensi solusi suatu persamaan integral yang juga merupakan perumuman dari aplikasi teorema titik tetap tersebut dalam ruang p-metrik. Dari hasil tersebut, dapat disimpulkan bahwa pemetaan (psi,varphi)_omega-kontraksi dapat didefinisikan dalam ruang p-metrik modular dan dapat dibuktikan teorema titik tetap untuk pemetaan (psi,varphi)_omega-kontraksi pada ruang p-metrik modular beserta aplikasi dari teorema titik tetap tersebut yang menjamin eksistensi solusi suatu persamaan integral.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75378037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Klasifikasi Kematangan Manggis Berdasarkan Fitur Warna dan Tekstur Menggunakan Algoritma Naive Bayes","authors":"Raihan Abimanyu Suharman, H. Hartono","doi":"10.21831/pythagoras.v17i2.53625","DOIUrl":"https://doi.org/10.21831/pythagoras.v17i2.53625","url":null,"abstract":"Manggis merupakan salah satu komoditas buah asli Indonesia yang memiliki prospek pasar yang menjanjikan, terlebih dalam pasar ekspor. Namun masih ada permasalahan dalam hal penyortiran buah hasil panen. Buah manggis hasil panen disortir berdasarkan kematangan buahnya untuk tujuan pasar yaitu pasar ekspor dan pasar domestik. Faktor penentu kematangan buah manggis adalah warna dan tekstur dari kulit buahnya. Penelitian ini bertujuan untuk mengklasifikasi kematangan buah manggis berdasarkan warna dan tekstur menggunakan algoritma Naive Bayes. Fitur warna dan tekstur yang diekstraksi adalah kontras, korelasi, energi, homogenitas, entropi, standar deviasi, mean, varians, skewness, dan kurtosis. Fitur diekstraksi dari citra RGB, citra grayscale, citra HSV, dan citra CIELAB. Hasil ekstraksi fitur melewati tahap seleksi fitur menggunakan algoritma Minimum Redundancy Maximum Relevance (MRMR). Metode klasifikasi yang digunakan adalah metode Naive Bayes. Model klasifikasi Naive Bayes menggunakan parameter sebanyak 13 fitur dalam pembangunan modelnya yaitu mean R, mean G, standar deviasi G, mean Saturation, mean Hue, standar deviasi Hue, standar deviasi Value, mean a*, mean b*, standar deviasi a*, standar deviasi b*, varians a*, dan kontras. Hasil klasifikasi kematangan buah manggis menggunakan algoritma Naive Bayes memperoleh tingkat akurasi sebesar 95,7% dengan sensitivitas, spesifisitas, dan presisi untuk kelas matang sebesar 93,3%, 96,8%, dan 93,3%. Sensitivitas, spesifisitas, dan presisi untuk kelas mentah masing-masing sebesar 100%. Sensitivitas, spesifisitas, dan presisi untuk kelas setengah matang sebesar 93,3%, 96,9%, dan 93,3%.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77553379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}