{"title":"Relation-Aware Weight Sharing in Decoupling Feature Learning Network for UAV RGB-Infrared Vehicle Re-Identification","authors":"Xingyue Liu;Jiahao Qi;Chen Chen;Kangcheng Bin;Ping Zhong","doi":"10.1109/TMM.2024.3400675","DOIUrl":"10.1109/TMM.2024.3400675","url":null,"abstract":"Owing to the capacity of performing full-time target searches, cross-modality vehicle re-identification based on unmanned aerial vehicles (UAV) is gaining more attention in both video surveillance and public security. However, this promising and innovative research has not been studied sufficiently due to the issue of data inadequacy. Meanwhile, the cross-modality discrepancy and orientation discrepancy challenges further aggravate the difficulty of this task. To this end, we pioneer a cross-modality vehicle Re-ID benchmark named UAV Cross-Modality Vehicle Re-ID (UCM-VeID), containing 753 identities with \u0000<bold>16015</b>\u0000 RGB and \u0000<bold>13913</b>\u0000 infrared images. Moreover, to meet cross-modality discrepancy and orientation discrepancy challenges, we present a hybrid weights decoupling network (HWDNet) to learn the shared discriminative orientation-invariant features. For the first challenge, we proposed a hybrid weights siamese network with a well-designed weight restrainer and its corresponding objective function to learn both modality-specific and modality shared information. In terms of the second challenge, three effective decoupling structures with two pretext tasks are investigated to flexibly conduct orientation-invariant feature separation task. Comprehensive experiments are carried out to validate the effectiveness of the proposed method.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9839-9853"},"PeriodicalIF":8.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yahui Xu;Yi Bin;Jiwei Wei;Yang Yang;Guoqing Wang;Heng Tao Shen
{"title":"Align and Retrieve: Composition and Decomposition Learning in Image Retrieval With Text Feedback","authors":"Yahui Xu;Yi Bin;Jiwei Wei;Yang Yang;Guoqing Wang;Heng Tao Shen","doi":"10.1109/TMM.2024.3417694","DOIUrl":"10.1109/TMM.2024.3417694","url":null,"abstract":"We study the task of image retrieval with text feedback, where a reference image and modification text are composed to retrieve the desired target image. To accomplish this goal, existing methods always get the multimodal representations through different feature encoders and then adopt different strategies to model the correlation between the composed inputs and the target image. However, the multimodal query brings more challenges as it requires not only the synergistic understanding of the semantics from the heterogeneous multimodal inputs but also the ability to accurately build the underlying semantic correlation existing in each inputs-target triplet, i.e., reference image, modification text, and target image. In this paper, we tackle these issues with a novel Align and Retrieve (AlRet) framework. First, our proposed methods employ the contrastive loss in the feature encoders to learn meaningful multimodal representation while making the subsequent correlation modeling process in a more harmonious space. Then we propose to learn the accurate correlation between the composed inputs and target image in a novel composition-and-decomposition paradigm. Specifically, the composition network couples the reference image and modification text into a joint representation to learn the correlation between the joint representation and target image. The decomposition network conversely decouples the target image into visual and text subspaces to exploit the underlying correlation between the target image with each query element. The composition-and-decomposition paradigm forms a closed loop, which can be optimized simultaneously to promote each other in the performance. Massive comparison experiments on three real-world datasets confirm the effectiveness of the proposed method.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9936-9948"},"PeriodicalIF":8.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang
{"title":"DeepSpoof: Deep Reinforcement Learning-Based Spoofing Attack in Cross-Technology Multimedia Communication","authors":"Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang","doi":"10.1109/TMM.2024.3414660","DOIUrl":"10.1109/TMM.2024.3414660","url":null,"abstract":"Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10879-10891"},"PeriodicalIF":8.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perceptual Image Hashing Using Feature Fusion of Orthogonal Moments","authors":"Xinran Li;Zichi Wang;Guorui Feng;Xinpeng Zhang;Chuan Qin","doi":"10.1109/TMM.2024.3405660","DOIUrl":"10.1109/TMM.2024.3405660","url":null,"abstract":"Due to the limited number of stable image feature descriptors and the simplistic concatenation approach to hash generation, existing hashing methods have not achieved a satisfactory balance between robustness and discrimination. To this end, a novel perceptual hashing method is proposed in this paper using feature fusion of fractional-order continuous orthogonal moments (FrCOMs). Specifically, two robust image descriptors, i.e., fractional-order Chebyshev Fourier moments (FrCHFMs) and fractional-order radial harmonic Fourier moments (FrRHFMs), are used to extract global structural features of a color image. Then, the canonical correlation analysis (CCA) strategy is employed to fuse these features during the final hash generation process. Compared to direct concatenation, CCA excels in eliminating redundancies between feature vectors, resulting in a shorter hash sequence and higher authentication performance. A series of experiments demonstrate that the proposed method achieves satisfactory robustness, discrimination and security. Particularly, the proposed method exhibits better tampering detection ability and robustness against combined content-preserving manipulations in practical applications.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10041-10054"},"PeriodicalIF":8.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Jiang;Peirong Ning;Jiayu Yang;Yongqi Zhai;Feng Gao;Ronggang Wang
{"title":"LLIC: Large Receptive Field Transform Coding With Adaptive Weights for Learned Image Compression","authors":"Wei Jiang;Peirong Ning;Jiayu Yang;Yongqi Zhai;Feng Gao;Ronggang Wang","doi":"10.1109/TMM.2024.3416831","DOIUrl":"10.1109/TMM.2024.3416831","url":null,"abstract":"The effective receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERFs remain insufficiently large, or heavy non-local attention mechanisms, which limit the potential of high-resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the \u0000<italic>first</i>\u0000 time in the learned image compression community, we introduce \u0000<italic>a few</i>\u0000 large kernel-based depth-wise convolutions to reduce more redundancy while maintaining modest complexity. Due to the wide range of image diversity, we further propose a mechanism to augment convolution adaptability through the self-conditioned generation of weights. The large kernels cooperate with non-linear embedding and gate mechanisms for better expressiveness and lighter point-wise interactions. Our investigation extends to refined training methods that unlock the full potential of these large kernels. Moreover, to promote more dynamic inter-channel interactions, we introduce an adaptive channel-wise bit allocation strategy that autonomously generates channel importance factors in a self-conditioned manner. To demonstrate the effectiveness of the proposed transform coding, we align the entropy model to compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC, and LLIC-TCM. Extensive experiments demonstrate that our proposed LLIC models have significant improvements over the corresponding baselines and reduce the BD-Rate by \u0000<inline-formula><tex-math>$9.49%, 9.47%,;text{and}; 10.94%$</tex-math></inline-formula>\u0000 on Kodak over VTM-17.0 Intra, respectively. Our LLIC models achieve state-of-the-art performances and better trade-offs between performance and complexity.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10937-10951"},"PeriodicalIF":8.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screen-Shooting Resistant Watermarking With Grayscale Deviation Simulation","authors":"Yiyi Li;Xin Liao;Xiaoshuai Wu","doi":"10.1109/TMM.2024.3415415","DOIUrl":"10.1109/TMM.2024.3415415","url":null,"abstract":"With the prevalence of electronic devices in our daily lives, content leakages frequently occur, and to enable leakage tracing, screen-shooting resistant watermarking has attracted tremendous attention. However, current studies often overlook a thoughtful investigation of the cross-media screen-camera process and fail to consider the effect of grayscale deviation on the screen. In this paper, we propose \u0000<underline>s</u>\u0000creen-\u0000<underline>s</u>\u0000hooting \u0000<underline>d</u>\u0000istortion \u0000<underline>s</u>\u0000imulation (\u0000<inline-formula><tex-math>$bf {SSDS}$</tex-math></inline-formula>\u0000), which involves a grayscale deviation function for constructing a more practical noise layer. We divide SSDS into screen displaying and camera shooting. For screen displaying, different viewing angles result in grayscale deviation with distinct intensities, and we simulate the distortions by modeling the relative position of the viewing point and the screen plane. For camera shooting, a series of distortion functions are used to approximate the perturbations in the camera pipeline, including defocus blur, noise and JPEG compression. Furthermore, the gradient-guided encoder is designed to conduct the embedding in the texture region using a modification cost map. Experimental results show that our proposed watermarking framework outperforms the state-of-the-art methods in terms of robustness and visual quality.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10908-10923"},"PeriodicalIF":8.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label for Salient Object Detection in Optical Remote Sensing Images","authors":"Yu Qiu;Yuhang Sun;Jie Mei;Jing Xu","doi":"10.1109/TMM.2024.3414669","DOIUrl":"10.1109/TMM.2024.3414669","url":null,"abstract":"Salient object detection in natural scene images (NSI-SOD) has undergone remarkable advancements in recent years. However, compared to those of natural images, the properties of remote sensing images (ORSIs), such as diverse spatial resolutions, complex background structures, and varying visual attributes of objects, are more complicated. Hence, how to explore the multiscale structural perceptual information of ORSIs to accurately detect salient objects is more challenging. In this paper, inspired by the superiority of contrastive learning, we propose a novel training paradigm for ORSI-SOD, named Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label (DHCont), to force the network to extract rich structural perceptual information and further learn the better-structured feature embedding spaces. Specifically, DHCont first splits the ORSI into several local subregions composed of color- and texture-similar pixels, which act as semantic pseudo-labels. This strategy can effectively explore the underdeveloped semantic categories in ORSI-SOD. To delve deeper into multiscale structure-aware optimization, DHCont incorporates a hybrid contrast strategy that integrates “pixel-to-pixel”, “region-to-region”, “pixel-to-region”, and “region-to-pixel” contrasts at multiple scales. Additionally, to enhance the edge details of salient regions, we develop a hard edge contrast strategy that focuses on improving the detection accuracy of hard pixels near the object boundary. Moreover, we introduce a deep contrast algorithm that adds additional deep-level constraints to the feature spaces of multiple stages. Extensive experiments on two popular ORSI-SOD datasets demonstrate that simply integrating our DHCont into the existing ORSI-SOD models can significantly improve the performance.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10892-10907"},"PeriodicalIF":8.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance","authors":"Guanlin Li;Bin Zhao;Xuelong Li","doi":"10.1109/TMM.2024.3414328","DOIUrl":"10.1109/TMM.2024.3414328","url":null,"abstract":"Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10854-10866"},"PeriodicalIF":8.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxuan Luo;Runmin Cong;Xialei Liu;Horace Ho Shing Ip;Sam Kwong
{"title":"Modeling Inner- and Cross-Task Contrastive Relations for Continual Image Classification","authors":"Yuxuan Luo;Runmin Cong;Xialei Liu;Horace Ho Shing Ip;Sam Kwong","doi":"10.1109/TMM.2024.3414277","DOIUrl":"10.1109/TMM.2024.3414277","url":null,"abstract":"Existing continual image classification methods demonstrate that samples from all sequences of continual classification tasks contain common (task-invariant) features and class-specific (task-variant) features that can be decoupled for classification tasks. However, the existing feature decomposition strategies only focus on individual tasks while neglecting the essential cues that the relationship between different tasks can provide, thereby hindering the improvement of continual image classification results. To address this issue, we propose an Adversarial Contrastive Continual Learning (ACCL) method that decouples task-invariant and task-variant features by constructing all-round, multi-level contrasts on sample pairs within individual tasks or from different tasks. Specifically, three constraints on the distribution of task-invariant and task-variant features are included, i.e., task-invariant features across different tasks should remain consistent, task-variant features should exhibit differences, and task-invariant and task-variant features should differ from each other. At the same time, we also design an effective contrastive replay strategy to make full use of the replay samples to participate in the construction of sample pairs, further alleviating the forgetting problem, and modeling cross-task relationships. Through extensive experiments on continual image classification tasks on CIFAR100, MiniImageNet and TinyImageNet, we show the superiority of our proposed strategy, improving the accuracy and with better visualized outcomes.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10842-10853"},"PeriodicalIF":8.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bilateral Interaction for Local-Global Collaborative Perception in Low-Light Image Enhancement","authors":"Rui Xu;Yuezhou Li;Yuzhen Niu;Huangbiao Xu;Yuzhong Chen;Tiesong Zhao","doi":"10.1109/TMM.2024.3413293","DOIUrl":"10.1109/TMM.2024.3413293","url":null,"abstract":"Low-light image enhancement is a challenging task due to the limited visibility in dark environments. While recent advances have shown progress in integrating CNNs and Transformers, the inadequate local-global perceptual interactions still impedes their application in complex degradation scenarios. To tackle this issue, we propose BiFormer, a lightweight framework that facilitates local-global collaborative perception via bilateral interaction. Specifically, our framework introduces a core CNN-Transformer collaborative perception block (CPB) that combines local-aware convolutional attention (LCA) and global-aware recursive Transformer (GRT) to simultaneously preserve local details and ensure global consistency. To promote perceptual interaction, we adopt bilateral interaction strategy for both local and global perception, which involves local-to-global second-order interaction (SoI) in the dual-domain, as well as a mixed-channel fusion (MCF) module for global-to-local interaction. The MCF is also a highly efficient feature fusion module tailored for degraded features. Extensive experiments conducted on low-level and high-level tasks demonstrate that BiFormer achieves state-of-the-art performance. Furthermore, it exhibits a significant reduction in model parameters and computational cost compared to existing Transformer-based low-light image enhancement methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10792-10804"},"PeriodicalIF":8.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}