{"title":"单眼退化图像的GAN先验增强新视图合成","authors":"Kehua Guo;Zheng Wu;Xianhong Wen;Shaojun Guo;Zhipeng Xi;Tianyu Chen","doi":"10.1109/TMM.2025.3542963","DOIUrl":null,"url":null,"abstract":"With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"5352-5362"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images\",\"authors\":\"Kehua Guo;Zheng Wu;Xianhong Wen;Shaojun Guo;Zhipeng Xi;Tianyu Chen\",\"doi\":\"10.1109/TMM.2025.3542963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"5352-5362\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891520/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891520/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GAN Prior-Enhanced Novel View Synthesis From Monocular Degraded Images
With the escalating demand for three-dimensional visual applications such as gaming, virtual reality, and autonomous driving, novel view synthesis has become a critical area of research. Current methods mainly depend on multiple views of the same subject to achieve satisfactory results, but there is often a significant lack of available data. Typically, only a single degraded image is available for reconstruction, which may be affected by occlusion, low resolution, or absence of color information. To overcome this limitation, we propose a two-stage feature matching approach designed specifically for single degraded images, leading to the synthesis of high-quality novel perspective images. This method involves the sequential use of an encoder for feature extraction followed by the fine-tuning of a generator for feature matching. Additionally, the integration of an information filtering module proposed by us during the GAN inversion process helps eliminate misleading information present in degraded images, thereby correcting the inversion direction. Extensive experimental results show that our method outperforms existing state-of-the-art single-view novel view synthesis techniques in handling challenges like occluded, grayscale, and low-resolution images. Moreover, the efficacy of our method remains unparalleled even when aforementioned method integrated with image restoration algorithms.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.