Medical Gas ResearchPub Date : 2025-03-01Epub Date: 2024-09-25DOI: 10.4103/mgr.MEDGASRES-D-24-00018
Zhihua Zhang, Zhenwei Li, Shuyang Li, Bing Xiong, You Zhou, Chaohong Shi
{"title":"Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.","authors":"Zhihua Zhang, Zhenwei Li, Shuyang Li, Bing Xiong, You Zhou, Chaohong Shi","doi":"10.4103/mgr.MEDGASRES-D-24-00018","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00018","url":null,"abstract":"<p><p>The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"156-163"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2025-03-01Epub Date: 2024-07-25DOI: 10.4103/mgr.MEDGASRES-D-24-00043
Catarina Almeida-Ferreira, Francisca Rodrigues, Carlos Miguel Marto, Maria Filomena Botelho, Mafalda Laranjo
{"title":"Cold atmospheric plasma for breast cancer treatment: what next?","authors":"Catarina Almeida-Ferreira, Francisca Rodrigues, Carlos Miguel Marto, Maria Filomena Botelho, Mafalda Laranjo","doi":"10.4103/mgr.MEDGASRES-D-24-00043","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00043","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"110-111"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2025-03-01Epub Date: 2024-06-26DOI: 10.4103/mgr.MEDGASRES-D-23-00056
Sajid Farooq, Allan Bereczki, Muhammad Habib, Isolda Costa, Olavo Cardozo
{"title":"High-performance plasmonics nanostructures in gas sensing: a comprehensive review.","authors":"Sajid Farooq, Allan Bereczki, Muhammad Habib, Isolda Costa, Olavo Cardozo","doi":"10.4103/mgr.MEDGASRES-D-23-00056","DOIUrl":"10.4103/mgr.MEDGASRES-D-23-00056","url":null,"abstract":"<p><p>Plasmonic nanostructures have emerged as indispensable components in the construction of high-performance gas sensors, playing a pivotal role across diverse applications, including industrial safety, medical diagnostics, and environmental monitoring. This review paper critically examines seminal research that underscores the remarkable efficacy of plasmonic materials in achieving superior attributes such as heightened sensitivity, selectivity, and rapid response times in gas detection. Offering a synthesis of pivotal studies, this review aims to furnish a comprehensive discourse on the contemporary advancements within the burgeoning domain of plasmonic gas sensing. The featured investigations meticulously scrutinize various plasmonic structures and their applications in detecting gases like carbon monoxide, carbon dioxide, hydrogen and nitrogen dioxide. The discussed frameworks encompass cutting-edge approaches, spanning ideal absorbers, surface plasmon resonance sensors, and nanostructured materials, thereby elucidating the diverse strategies employed for advancing plasmonic gas sensing technologies.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"1-9"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anesthesia and its environmental impact: approaches to minimize exposure to anesthetic gases and reduce waste.","authors":"Khalid Samad, Muhammad Saad Yousuf, Hameed Ullah, Syed Shabbir Ahmed, Khalid Maudood Siddiqui, Asad Latif","doi":"10.4103/mgr.MEDGASRES-D-23-00059","DOIUrl":"10.4103/mgr.MEDGASRES-D-23-00059","url":null,"abstract":"<p><p>In today's era of modern healthcare, the intersection between medical practices and environmental responsibility has gained significant attention. One such area of focus is the practice of anesthesia, which plays a crucial role in various surgical procedures. Anesthetics such as nitrous oxide and volatile halogenated ethers (desflurane, isoflurane, sevoflurane) are examples of medical gases that are strong greenhouse gases that contribute to global warming. During medical procedures, most of these anesthetic agents are released into the atmosphere, which exacerbates their influence on the environment. Also anesthesia delivery systems have traditionally utilized high flow rates of gases, leading to not only excessive consumption but also a considerable environmental impact in terms of greenhouse gas emissions. However, the emergence of low-flow anesthesia (LFA) presents a promising solution for achieving emission reduction and cost savings, thereby aligning healthcare practices with sustainability goals. Understanding LFA involves the administration of anesthetic gases to patients at reduced flow rates compared to conventional high-flow methods. This practice requires precision in gas delivery, often incorporating advanced monitoring and control systems. By optimizing gas flow to match the patient's requirements, LFA minimizes wastage and excessive gas release into the environment, subsequently curbing the carbon footprint associated with healthcare operations. Decreasing volatile anesthetic delivery provides safe and effective strategies for anesthesia providers to decrease costs and reduce environmental pollution. Current literature support in favor of LFA represents an area of cost containment and an opportunity to lessen the environmental impact of anesthesia. This article will cover the concept of LFA, the distinctions between low flow and minimal flow, and the potential advantages of LFA, such as those related to patient safety, the environment, and the economy.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"101-109"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2025-03-01Epub Date: 2024-10-02DOI: 10.4103/mgr.MEDGASRES-D-24-00005
Xu Zhang, Shi-Jun Wang, Si-Cen Wan, Xiang Li, Gang Chen
{"title":"Ozone: complicated effects in central nervous system diseases.","authors":"Xu Zhang, Shi-Jun Wang, Si-Cen Wan, Xiang Li, Gang Chen","doi":"10.4103/mgr.MEDGASRES-D-24-00005","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00005","url":null,"abstract":"<p><p>Oxidative stress is closely related to various diseases. Ozone can produce redox reactions through its unique response. As a source of the oxidative stress response, the strong oxidizing nature of ozone can cause severe damage to the body. On the other hand, low ozone concentrations can activate various mechanisms to combat oxidative stress and achieve therapeutic effects. Some animal experiments and clinical studies have revealed the potential medical value of ozone, indicating that ozone is not just a toxic gas. By reviewing the mechanism of ozone and its therapeutic value in treating central nervous system diseases (especially ischemic stroke and Alzheimer's disease) and the toxic effects of ozone, we find that ozone inhalation and a lack of antioxidants or excessive exposure lead to harmful impacts. However, with adequate antioxidants, ozone can transmit oxidative stress signals, reduce inflammation, reduce amyloid β peptide levels, and improve tissue oxygenation. Similar mechanisms to those of possible new drugs for treating ischemic stroke and Alzheimer's disease indicate the potential of ozone. Nevertheless, limited research has restricted the application of ozone. More studies are needed to reveal the exact dose-effect relationship and healing effect of ozone.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"44-57"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2025-03-01Epub Date: 2024-10-02DOI: 10.4103/mgr.MEDGASRES-D-23-00003
Hao Wu, Sheng Wang, Fei-Biao Dai, Chao-Liang Tang
{"title":"Research progress in the clinical application of inhaled anesthetic sevoflurane.","authors":"Hao Wu, Sheng Wang, Fei-Biao Dai, Chao-Liang Tang","doi":"10.4103/mgr.MEDGASRES-D-23-00003","DOIUrl":"10.4103/mgr.MEDGASRES-D-23-00003","url":null,"abstract":"<p><p>Sevoflurane has been widely used in clinical anesthesia as an inhalation anesthetic. With the development of medicine, there have been several new applications in recent years, such as daytime surgery, labor analgesia, and combined nerve block for some surgeries. Moreover, as research progresses, it has been found that it not only has potential organ protection effects but can also be used to treat severe asthma and relieve the tracheal spasm state. In addition, local administration can effectively treat vascular ulcers. We briefly review the organ protective effect of sevoflurane, its application in dental treatment, asthma treatment, vascular ulcer treatment and some new progress in clinical application.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"85-92"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gill and brain transcriptomic analysis of mandarin fish(Siniperca chuatsi)reveals hypoxia-induced mitochondrial dysfunction and modulation of metabolism.","authors":"Weidong Ding, Liping Cao, Zheming Cao, Xuwen Bing","doi":"10.1016/j.cbd.2024.101367","DOIUrl":"10.1016/j.cbd.2024.101367","url":null,"abstract":"<p><p>The oxygen content in the fish ponds is facing greater challenges than before in the aquaculture of mandarin fish (Siniperca chuatsi) due to the change of climate and eutrophication. Until now, little is known about the molecular mechanisms underlying the harmful effects of hypoxia on this species. In this work, we built transcriptomes for the mandarin fish that were exposed to decreased oxygen concentration at two times points (24 h and 96 h). The respiratory metabolism activities of pyruvate kinase (PK), hexokinase (HK), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) had different significantly changes during hypoxic treatment. Histological observation of the gill and brain also revealed some damages by hypoxia. A total of 196,355 transcripts were involved in the Gene Ontology analysis, and the numbers of differentially expressed genes (DEGs) in the brain and the gill between the control and experiment groups are 141 and 552 respectively involved in the different hypoxic stress time. The DEGs were then analyzed using KEGG enrichment analysis. The results showed significant differences in the expression of some genes involved in ribosome pathways,biosynthesis of amino acids, hippo signaling pathway, and pentose phosphate pathway,glycolysis/gluconeogenesis pathway and the TCA cycle. The huge number of transcriptome sequences collected in this study has enhanced the mandarin fish gene resources, and the identified DEGs and related pathway analysis give essential information for understanding biological responses to hypoxia.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"53 ","pages":"101367"},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sunlight-induced degradation of squarazine-based cyanide complex through imine CN free rotation: Sensing, binding and degradation studies of anionic complex.","authors":"Poomanirajeshwari Kathirvelu, Murugan Gowripriya, Ariputhiran Muthulakshmi, Vanthana Jeyasingh, Kumaresan Murugesan, Sudha Lakshminarayanan, Selvapalam Narayanan, Lakshminarayanan Piramuthu","doi":"10.1016/j.saa.2024.125404","DOIUrl":"10.1016/j.saa.2024.125404","url":null,"abstract":"<p><p>Sunlight-induced degradable squarazine based electron deficient receptor 3,4-bis((E)-2-((perfluorophenyl)methylene)hydrazinyl)cyclobut-3-ene-1,2-dione, L has been reported here. Naked-eye colorimetric analysis, UV-Vis, IR and <sup>1</sup>H, 19F, <sup>31</sup>P-NMR spectrometric results show that this receptor L high affinity with cyanide anion. The strength of the receptor L towards colorimetrically responded anions are calculated by UV-Vis spectrometric titrations and it is found to be 9.9597 × 10<sup>3</sup> for cyanide. Interestingly, upon exposure of those anionic complexes under sunlight, the colors of those respective anionic complexes are disappeared. From this result, it is clear that these anionic complexes are capable to discharge the bound anion via CN free rotation. As evidenced from spectroscopic and colorimetric results, it is also clear that this anionic complex is not only release the bound anion, but also undergone self-degradation upon sunlight exposure. To the best of our knowledge, this is the first example for cyanide sensing of anion accomplished with self-degradation of anion complex upon exposure on sunlight.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"327 ","pages":"125404"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasmeen A S Hameed, Nada Alkhathami, Razan M Snari, Alaa M Munshi, Omaymah Alaysuy, Muhammad Hadi, Marwah A Alsharif, M A Khalil, Nashwa M El-Metwaly
{"title":"Novel amino-functionalized MOF-based sensor for zinc ion detection in water and blood serum samples.","authors":"Yasmeen A S Hameed, Nada Alkhathami, Razan M Snari, Alaa M Munshi, Omaymah Alaysuy, Muhammad Hadi, Marwah A Alsharif, M A Khalil, Nashwa M El-Metwaly","doi":"10.1016/j.saa.2024.125432","DOIUrl":"10.1016/j.saa.2024.125432","url":null,"abstract":"<p><p>Aquatic systems with low zinc levels can experience a significant decrease in carbon dioxide uptake and limited growth of phytoplankton species. In this study, we describe the use of a new fluorescent sensor based on NH<sub>2</sub>-MIL-53(Al), and modified with glutaraldehyde and sulfadoxine, for selectively detecting zinc ions in water and blood serum samples. Characterization of the synthesized material was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming successful functionalization and preservation of the MOF structure. The sensor's performance for Zn<sup>2+</sup> detection was evaluated by spectrofluorometry, demonstrating a significant fluorescence enhancement upon Zn<sup>2+</sup> binding due to the interaction between Zn<sup>2+</sup> ions and the sulfonamide groups. With a detection limit as low as 3.14 × 10<sup>-2</sup> ppm, the sensor demonstrates high selectivity for Zn<sup>2+</sup> over other common metal ions. The sensor's response is rapid, stable, and reproducible, making it suitable for practical applications. Real sample analysis was conducted in tap water and blood serum samples, with the results compared to those obtained using ICP-OES and a colorimetric test with 5-bromo-PAPS. The comparison confirmed the high accuracy and reliability of the fluorescent sensor in detecting Zn<sup>2+</sup> ions in complex matrices. NH<sub>2</sub>-MIL-53(Al) modified with glutaraldehyde and sulfadoxine shows potential as a selective fluorescent sensor for Zn<sup>2+</sup> detection, making it a valuable tool for monitoring the environment and biology.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"327 ","pages":"125432"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral resolution techniques for the simultaneous spectrophotometric determination of anti-Parkinson drugs in their combined pharmaceutical dosage form and biological sample based on multivariate calibration and absorbance subtraction methods.","authors":"Fereshteh Zarnooshe Farahani, Mahmoud Reza Sohrabi, Fariba Tadayon","doi":"10.1016/j.saa.2024.125399","DOIUrl":"10.1016/j.saa.2024.125399","url":null,"abstract":"<p><p>In this study, simultaneous determination of levodopa (LEV) and carbidopa (CBD) in binary mixtures, pharmaceutical formulation, and biological sample was conducted using the application of simple, fast, sensitive, and accurate UV-spectrophotometry in combination with chemometrics methods. The first method is net analyte signal (NAS) based on the multivariate calibration methods. The limit of detection (LOD) and limit of quantification (LOQ) were 0.9758, 0.7633 µg/mL and 2.956, 2.313 µg/mL over the linear range of 5-40 and 0.5-20 µg/mL for LEV and CBD, respectively. In the NAS approach, the mean recovery values of mixtures were 100.12 % for LEV and 99.65 % for CBD, where root mean square error (RMSE) values were 0.0106 and 0.0141 for LEV and CBD, respectively. The second method is absorbance subtraction (AS) based on the absorption factor technique for analyzing the isosbestic point. This model was constructed at an isosbestic point of 261 nm in the range of 5-40 and 0.5-20 µg/mL with coefficient determination (R<sup>2</sup>) of 0.9985 and 0.9996 for LEV and CBD, respectively. AS method could estimate LEV and CBD with LOD values of 1.924 and 0.5657 μg/mL and LOQ values of 5.833 and 1.714 μg/mL, respectively. The recovery percentage was between 91.50 % to 104.60 % with RMSE of 0.1455 for LEV and 92.00 % to 106.66 % with RMSE of 0.2508 for CBD. The introduced approaches have the benefit of concurrent analysis of the mentioned components without any pretreatment. Statistical comparison of the results of real sample analysis with high-performance liquid chromatography (HPLC) did not show a significant difference. These methods can replace HPLC in quality control laboratories when fast, precise, and low-cost analysis is needed.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"327 ","pages":"125399"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}