雨红球菌对亚甲基蓝生物修复的同步红外成像与光谱研究。

IF 4.6
Jinghua Liu, Wenzhe Li, Xuanyi Ren, Zeming Qi, Jingwen Ma, Shan Huang, Lishuan Chai, Yue Jiao, Jiawei Xu, Xueqin Liu
{"title":"雨红球菌对亚甲基蓝生物修复的同步红外成像与光谱研究。","authors":"Jinghua Liu, Wenzhe Li, Xuanyi Ren, Zeming Qi, Jingwen Ma, Shan Huang, Lishuan Chai, Yue Jiao, Jiawei Xu, Xueqin Liu","doi":"10.1016/j.saa.2025.126613","DOIUrl":null,"url":null,"abstract":"<p><p>Methylene blue (MB), as a phenothiazine dye, causes a harmful damage to health and receives increasingly more environmental concern. Herein, the batch experiments for MB biosorption and biotransformation by Haematococcus pluvialis were carried out to evaluate the optimal parameters of MB removal. In this work, we found that the maximum removal efficiency was attained when MB was at the initial concentration of 5 mg/L. Meanwhile, the cellular numbers and pigments decreased dramatically with the rising content of MB. Furthermore, synchrotron-FTIR microscopic imaging is employed here to investigate the interaction between MB dye and algal cells by the measurement of the various vital changes of cellular components involving in the bioremediation of the hazardous dye, which indicated that MB dye as a photosensitizer can trigger the algal transformation from vegetative cells into red cysts by introducing oxidative stress. Accordingly, the dye removal efficiency can be sharply enhanced by the transformed algal cells for the accumulation of astaxanthin or carotenoids. In addition, the FTIR spectroscopy combined with PCA algorithm was further utilized to discriminate various algal status based on their spectral features. As a result, it demonstrates that microscopic imaging and FTIR spectroscopy is a powerful and useful tool to elucidate underlying mechanisms of dye removal by algal cells at high spatial resolution and to evaluate cellular physiological characteristics through multivariate statistical analysis, and it even provides a novel and effective strategy to rapidly screen the potential microalgae for the removal of recalcitrant dyes from wastewater.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"343 ","pages":"126613"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the bioremediation of methylene blue by Haematococcus pluvialis through synchrotron-FTIR imaging and spectroscopy.\",\"authors\":\"Jinghua Liu, Wenzhe Li, Xuanyi Ren, Zeming Qi, Jingwen Ma, Shan Huang, Lishuan Chai, Yue Jiao, Jiawei Xu, Xueqin Liu\",\"doi\":\"10.1016/j.saa.2025.126613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylene blue (MB), as a phenothiazine dye, causes a harmful damage to health and receives increasingly more environmental concern. Herein, the batch experiments for MB biosorption and biotransformation by Haematococcus pluvialis were carried out to evaluate the optimal parameters of MB removal. In this work, we found that the maximum removal efficiency was attained when MB was at the initial concentration of 5 mg/L. Meanwhile, the cellular numbers and pigments decreased dramatically with the rising content of MB. Furthermore, synchrotron-FTIR microscopic imaging is employed here to investigate the interaction between MB dye and algal cells by the measurement of the various vital changes of cellular components involving in the bioremediation of the hazardous dye, which indicated that MB dye as a photosensitizer can trigger the algal transformation from vegetative cells into red cysts by introducing oxidative stress. Accordingly, the dye removal efficiency can be sharply enhanced by the transformed algal cells for the accumulation of astaxanthin or carotenoids. In addition, the FTIR spectroscopy combined with PCA algorithm was further utilized to discriminate various algal status based on their spectral features. As a result, it demonstrates that microscopic imaging and FTIR spectroscopy is a powerful and useful tool to elucidate underlying mechanisms of dye removal by algal cells at high spatial resolution and to evaluate cellular physiological characteristics through multivariate statistical analysis, and it even provides a novel and effective strategy to rapidly screen the potential microalgae for the removal of recalcitrant dyes from wastewater.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"343 \",\"pages\":\"126613\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.126613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.126613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚甲基蓝(MB)作为一种吩噻嗪类染料,对人体健康有害,受到越来越多的环境关注。本文通过雨红球菌对MB的生物吸附和生物转化的批量实验,对MB去除的最佳参数进行了评价。在本研究中,我们发现当MB的初始浓度为5 mg/L时,去除效率最高。同时,随着MB含量的增加,细胞数量和色素急剧减少。此外,本文采用同步辐射-红外显微成像技术,通过测量有害染料生物修复过程中细胞成分的各种重要变化,来研究MB染料与藻类细胞之间的相互作用。这表明MB染料作为光敏剂可以通过引入氧化应激触发藻类由营养细胞向红囊的转化。因此,通过转化的藻细胞积累虾青素或类胡萝卜素,可以大大提高染料去除效率。此外,进一步利用FTIR光谱结合PCA算法,根据不同藻类的光谱特征对其状态进行判别。结果表明,显微成像和FTIR光谱是一种强大而有用的工具,可以在高空间分辨率下阐明藻类细胞去除染料的潜在机制,并通过多元统计分析来评估细胞生理特性,甚至为快速筛选潜在的微藻去除废水中顽固染料提供了一种新颖而有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the bioremediation of methylene blue by Haematococcus pluvialis through synchrotron-FTIR imaging and spectroscopy.

Methylene blue (MB), as a phenothiazine dye, causes a harmful damage to health and receives increasingly more environmental concern. Herein, the batch experiments for MB biosorption and biotransformation by Haematococcus pluvialis were carried out to evaluate the optimal parameters of MB removal. In this work, we found that the maximum removal efficiency was attained when MB was at the initial concentration of 5 mg/L. Meanwhile, the cellular numbers and pigments decreased dramatically with the rising content of MB. Furthermore, synchrotron-FTIR microscopic imaging is employed here to investigate the interaction between MB dye and algal cells by the measurement of the various vital changes of cellular components involving in the bioremediation of the hazardous dye, which indicated that MB dye as a photosensitizer can trigger the algal transformation from vegetative cells into red cysts by introducing oxidative stress. Accordingly, the dye removal efficiency can be sharply enhanced by the transformed algal cells for the accumulation of astaxanthin or carotenoids. In addition, the FTIR spectroscopy combined with PCA algorithm was further utilized to discriminate various algal status based on their spectral features. As a result, it demonstrates that microscopic imaging and FTIR spectroscopy is a powerful and useful tool to elucidate underlying mechanisms of dye removal by algal cells at high spatial resolution and to evaluate cellular physiological characteristics through multivariate statistical analysis, and it even provides a novel and effective strategy to rapidly screen the potential microalgae for the removal of recalcitrant dyes from wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信