{"title":"Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity","authors":"Rui-lian Du, Zhi-zhong Sun","doi":"10.1007/s10255-024-1054-2","DOIUrl":"10.1007/s10255-024-1054-2","url":null,"abstract":"<div><p>In this work, a novel time-stepping <span>(overline{L1})</span> formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks","authors":"Liang-qiang Zhou, Fang-qi Chen","doi":"10.1007/s10255-024-1038-2","DOIUrl":"10.1007/s10255-024-1038-2","url":null,"abstract":"<div><p>Chaotic dynamics of the van der Pol-Duffing oscillator subjected to periodic external and parametric excitations with delayed feedbacks are investigated both analytically and numerically in this manuscript. With the Melnikov method, the critical value of chaos arising from homoclinic or heteroclinic intersections is derived analytically. The feature of the critical curves separating chaotic and non-chaotic regions on the excitation frequency and the time delay is investigated analytically in detail. The monotonicity of the critical value to the excitation frequency and time delay is obtained rigorously. It is presented that there may exist a special frequency for this system. With this frequency, chaos in the sense of Melnikov may not occur for any excitation amplitudes. There also exists a uncontrollable time delay with which chaos always occurs for this system. Numerical simulations are carried out to verify the chaos threshold obtained by the analytical method.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Test of U-type for Goodness-of-fit in Regression Models Through Martingale Difference Divergence","authors":"Kai Xu, Yan-qin Nie, Dao-jiang He","doi":"10.1007/s10255-024-1132-5","DOIUrl":"10.1007/s10255-024-1132-5","url":null,"abstract":"<div><p>Based on the martingale difference divergence, a recently proposed metric for quantifying conditional mean dependence, we introduce a consistent test of U-type for the goodness-of-fit of linear models under conditional mean restriction. Methodologically, our test allows heteroscedastic regression models without imposing any condition on the distribution of the error, utilizes effectively important information contained in the distance of the vector of covariates, has a simple form, is easy to implement, and is free of the subjective choice of parameters. Theoretically, our mathematical analysis is of own interest since it does not take advantage of the empirical process theory and provides some insights on the asymptotic behavior of U-statistic in the framework of model diagnostics. The asymptotic null distribution of the proposed test statistic is derived and its asymptotic power behavior against fixed alternatives and local alternatives converging to the null at the parametric rate is also presented. In particular, we show that its asymptotic null distribution is very different from that obtained for the true error and their differences are interestingly related to the form expression for the estimated parameter vector embodied in regression function and a martingale difference divergence matrix. Since the asymptotic null distribution of the test statistic depends on data generating process, we propose a wild bootstrap scheme to approximate its null distribution. The consistency of the bootstrap scheme is justified. Numerical studies are undertaken to show the good performance of the new test.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giulia L Celora, Ruby Nixson, Joe M Pitt-Francis, Philip K Maini, Helen M Byrne
{"title":"Characterising Cancer Cell Responses to Cyclic Hypoxia Using Mathematical Modelling.","authors":"Giulia L Celora, Ruby Nixson, Joe M Pitt-Francis, Philip K Maini, Helen M Byrne","doi":"10.1007/s11538-024-01359-0","DOIUrl":"10.1007/s11538-024-01359-0","url":null,"abstract":"<p><p>In vivo observations show that oxygen levels in tumours can fluctuate on fast and slow timescales. As a result, cancer cells can be periodically exposed to pathologically low oxygen levels; a phenomenon known as cyclic hypoxia. Yet, little is known about the response and adaptation of cancer cells to cyclic, rather than, constant hypoxia. Further, existing in vitro models of cyclic hypoxia fail to capture the complex and heterogeneous oxygen dynamics of tumours growing in vivo. Mathematical models can help to overcome current experimental limitations and, in so doing, offer new insights into the biology of tumour cyclic hypoxia by predicting cell responses to a wide range of cyclic dynamics. We develop an individual-based model to investigate how cell cycle progression and cell fate determination of cancer cells are altered following exposure to cyclic hypoxia. Our model can simulate standard in vitro experiments, such as clonogenic assays and cell cycle experiments, allowing for efficient screening of cell responses under a wide range of cyclic hypoxia conditions. Simulation results show that the same cell line can exhibit markedly different responses to cyclic hypoxia depending on the dynamics of the oxygen fluctuations. We also use our model to investigate the impact of changes to cell cycle checkpoint activation and damage repair on cell responses to cyclic hypoxia. Our simulations suggest that cyclic hypoxia can promote heterogeneity in cellular damage repair activity within vascular tumours.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luís F.N. Sá , Felipe Silva Maffei , Lucas N.B.S. Ribeiro , Julio Romano Meneghini , Emílio Carlos Nelli Silva
{"title":"Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions","authors":"Luís F.N. Sá , Felipe Silva Maffei , Lucas N.B.S. Ribeiro , Julio Romano Meneghini , Emílio Carlos Nelli Silva","doi":"10.1016/j.camwa.2024.10.029","DOIUrl":"10.1016/j.camwa.2024.10.029","url":null,"abstract":"<div><div>In this work, a topology optimization model for designing devices that operate with multiple relative velocities considering turbulent compressible flows is proposed. The model consists of the Favre-averaged Navier-stokes equations in an axisymmetric domain coupled with a continuous boundary propagation model. The propagation is used to impose different solid behaviors based on which wall it is connected to, for example, solid material in contact with a rotating shaft will have a rotational velocity, while material encrusted in the support will have zero absolute velocity. The implementation is composed of a segregated solver with steps for the FANS equations, the <span><math><mi>k</mi><mo>−</mo><mi>ϵ</mi></math></span> turbulent equations, and the propagation model. The sensitivity is obtained with automatic differentiation of the adjoint method and an internal point optimizer is used to update the design variable. A study case of a labyrinth seal is defined to illustrate the methodology by using three different objective functions, maximization of radial velocity, static pressure change rate, and vorticity. The results are designs for small-scale labyrinth seals in real operation conditions.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fine profiles of positive solutions for some nonlocal dispersal equations","authors":"Yan-Hua Xing, Jian-Wen Sun","doi":"10.1016/j.jde.2024.10.038","DOIUrl":"10.1016/j.jde.2024.10.038","url":null,"abstract":"<div><div>In this paper, we study the positive solutions of some nonlocal dispersal equations. We are interested in the new profiles of positive solutions with different reaction functions when spatial degeneracy occurs. It is shown that there can exist six kinds of asymptotic profiles for the nonlocal dispersal problem. Our study also provides the precise effect of reaction functions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Refining a chain theorem from matroids to internally 4-connected graphs","authors":"Chanun Lewchalermvongs , Guoli Ding","doi":"10.1016/j.aam.2024.102802","DOIUrl":"10.1016/j.aam.2024.102802","url":null,"abstract":"<div><div>Graph theory and matroid theory are interconnected with matroids providing a way to generalize and analyze the structural and independence properties within graphs. Chain theorems, vital tools in both matroid and graph theory, enable the analysis of matroid structures associated with graphs. In a significant contribution, Chun, Mayhew, and Oxley <span><span>[2]</span></span> established a chain theorem for internally 4-connected binary matroids, clarifying the operations involved. Our research builds upon this by specifying the matroid result to internally 4-connected graphs. The primary goal of our research is to refine this chain theorem for matroids into a chain theorem for internally 4-connected graphs, making it more accessible to individuals less acquainted with matroid theory.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normalized solutions to HLS upper critical focusing Choquard equation with a non-autonomous nonlocal perturbation","authors":"Ziheng Zhang, Jianlun Liu, Hong-Rui Sun","doi":"10.1007/s13324-024-00979-y","DOIUrl":"10.1007/s13324-024-00979-y","url":null,"abstract":"<div><p>This paper is concerned with the following HLS upper critical focusing Choquard equation with a non-autonomous nonlocal perturbation </p><div><div><span>$$begin{aligned} {left{ begin{array}{ll} -{Delta }u-mu (I_alpha *[h|u|^p])h|u|^{p-2}u-(I_alpha *|u|^{2^*_alpha })|u|^{2^*_alpha -2}u=lambda u text{ in } mathbb {R}^N, int _{mathbb {R}^N} u^2 dx = c, end{array}right. } end{aligned}$$</span></div></div><p>where <span>(mu ,c>0)</span>, <span>(N ge 3)</span>, <span>(0<alpha <N)</span>, <span>(2_alpha :=frac{N+alpha }{N}<p<2^*_alpha :=frac{N+alpha }{N-2})</span>, <span>(lambda in mathbb {R})</span> is a Lagrange multiplier, <span>(I_alpha )</span> is the Riesz potential and <span>(h:mathbb {R}^Nrightarrow (0,infty ))</span> is a continuous function. Under a class of reasonable assumptions on <i>h</i>, we prove the existence of normalized solutions to the above problem for the case <span>(frac{N+alpha +2}{N}le p<frac{N+alpha }{N-2})</span> and discuss its asymptotical behaviors as <span>(mu rightarrow 0^+)</span> and <span>(crightarrow 0^+)</span> respectively. When <span>(frac{N+alpha }{N}<p<frac{N+alpha +2}{N})</span>, we obtain the existence of one local minimizer after considering a suitable minimization problem.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quantization of Maxwell theory in the Cauchy radiation gauge: Hodge decomposition and Hadamard states","authors":"Simone Murro, Gabriel Schmid","doi":"10.1112/jlms.70020","DOIUrl":"https://doi.org/10.1112/jlms.70020","url":null,"abstract":"<p>The aim of this paper is to prove the existence of Hadamard states for the Maxwell equations on any globally hyperbolic spacetime. This will be achieved by introducing a new gauge fixing condition, the <i>Cauchy radiation gauge</i>, that will allow to suppress all the unphysical degrees of freedom. The key ingredient for achieving this gauge is a new Hodge decomposition for differential <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-forms in Sobolev spaces on complete (possibly noncompact) Riemannian manifolds.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stefan Heinrich is the Winner of the 2024 Best Paper Award of the Journal of Complexity","authors":"Erich Novak, Mario Ullrich, Jan Vybíral","doi":"10.1016/j.jco.2024.101905","DOIUrl":"10.1016/j.jco.2024.101905","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}