{"title":"An unusual family of supersingular curves of genus five in characteristic two","authors":"Dušan Dragutinović","doi":"10.1016/j.ffa.2025.102736","DOIUrl":"10.1016/j.ffa.2025.102736","url":null,"abstract":"<div><div>We construct a family of smooth supersingular curves of genus 5 in characteristic 2 with several notable features: its dimension matches the expected dimension of any component of the supersingular locus in genus 5, its members are non-hyperelliptic curves with non-trivial automorphism groups, and each curve in the family admits a double cover structure over both an elliptic curve and a genus-2 curve. We also provide an explicit parametrization of this family.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102736"},"PeriodicalIF":1.2,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transversals in a collection of stars or generic trees","authors":"Ethan Y.H. Li , Luyi Li , Ping Li","doi":"10.1016/j.disc.2025.114836","DOIUrl":"10.1016/j.disc.2025.114836","url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a fixed collection of graphs on vertex set <em>V</em> and let <span><math><mi>G</mi></math></span> be a collection of elements in <span><math><mi>F</mi></math></span>. We investigate the transversal problem of finding the maximum value of <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> when <span><math><mi>G</mi></math></span> contains no rainbow element in <span><math><mi>F</mi></math></span>. In this paper, we determine the exact values and characterize all the extremal cases of <span><math><mi>G</mi></math></span> when <span><math><mi>F</mi></math></span> is a collection of stars or generic trees with the same order, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114836"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral multipliers II: Elliptic and parabolic operators and Bochner–Riesz means","authors":"Marius Beceanu, Michael Goldberg","doi":"10.1016/j.jde.2025.113836","DOIUrl":"10.1016/j.jde.2025.113836","url":null,"abstract":"<div><div>We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where <em>V</em> is an arbitrarily large rough real-valued scalar potential and <em>H</em> can have negative eigenvalues. All results are in three space dimensions.</div><div>We eliminate several unnecessary conditions on <em>V</em>, leaving just <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the closure of the space of test functions in the global Kato class <span><math><mi>K</mi></math></span>, meaning<span><span><span><math><munder><mi>sup</mi><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo><</mo><mo>∞</mo><mo>.</mo></math></span></span></span></div><div>For the spectral multiplier bounds, we assume that <em>H</em> has no zero or positive energy bound states. For <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we prove that <em>H</em> has at most a finite number of negative bound states. If in addition <span><math><mi>V</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, then by <span><span>[16]</span></span> and <span><span>[20]</span></span> there are no positive energy bound states.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113836"},"PeriodicalIF":2.3,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145269782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haochuan Huang , Rui Huang , Gege Liu , Jingxue Yin
{"title":"Rescaling invariance exponents for the Lane-Emden heat flow system","authors":"Haochuan Huang , Rui Huang , Gege Liu , Jingxue Yin","doi":"10.1016/j.nonrwa.2025.104515","DOIUrl":"10.1016/j.nonrwa.2025.104515","url":null,"abstract":"<div><div>This paper is concerned with the existence and asymptotic behavior of solutions for the Lane-Emden heat flow system. Our arguments are based on the upper and lower solutions method, which is different from the semigroup techniques and a fixed point theorem in previous works [3, 11]. It is worthy of mentioning that our results do not impose the integrability restrictions on initial values and thus the decay rate exponents of the initial values can be selected as the <em>rescaling invariance exponents</em> for the Lane-Emden heat flow system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104515"},"PeriodicalIF":1.8,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145270703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface to the Special Issue “The Ising model at 100: some modern perspectives”","authors":"Siva Athreya, Cristian Giardinà","doi":"10.1007/s11040-025-09530-2","DOIUrl":"10.1007/s11040-025-09530-2","url":null,"abstract":"","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"28 4","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The nucleus of the Johnson graph J(N,D)","authors":"Kazumasa Nomura , Paul Terwilliger","doi":"10.1016/j.disc.2025.114844","DOIUrl":"10.1016/j.disc.2025.114844","url":null,"abstract":"<div><div>This paper is about the nucleus of the Johnson graph <span><math><mi>Γ</mi><mo>=</mo><mi>J</mi><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>N</mi><mo>></mo><mn>2</mn><mi>D</mi></math></span>. The nucleus is described as follows. Let <em>X</em> denote the vertex set of Γ. Let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> denote the adjacency matrix of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote the <em>Q</em>-polynomial ordering of the primitive idempotents of <em>A</em>. Fix <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. The corresponding dual adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the diagonal matrix in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> such that for <span><math><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> the <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is equal to the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><mo>|</mo><mi>X</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> the diagonal matrix <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is the projection onto the <em>i</em>th subconstituent of Γ with respect to <em>x</em>. The matrices <span><math><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> are the primitive idempotents of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. The subalgebra <em>T</em> of <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> generated by <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is called the subconstituent algebra of Γ with respect to <em>x</em>. Let <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msup></math></span> denote the standard module of Γ. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> define<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow><","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114844"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The symmetric strong circuit elimination property","authors":"Christine Cho , James Oxley , Suijie Wang","doi":"10.1016/j.aam.2025.102983","DOIUrl":"10.1016/j.aam.2025.102983","url":null,"abstract":"<div><div>If <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are circuits in a matroid <em>M</em> with <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <em>e</em> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then <em>M</em> has a circuit <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that <span><math><mi>e</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. This strong circuit elimination axiom is inherently asymmetric. A matroid <em>M</em> has the symmetric strong circuit elimination property (SSCE) if, when the above conditions hold and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, there is a circuit <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> with <span><math><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>⊆</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. We prove that a connected matroid has this property if and only if it has no two skew circuits. We also characterize such matroids in terms of forbidden series minors, and we give a new matroid axiom system that is built around a modification of SSCE.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102983"},"PeriodicalIF":1.3,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2025-10-10DOI: 10.1093/biomtc/ujaf132
Jinyuan Liu
{"title":"Computational aspects of psychometric methods with R by Patricia Martinková and Adéla Hladká, Chapman & Hall/CRC, 2023, ISBN: 9781003054313, https://doi.org/10.1201/9781003054313.","authors":"Jinyuan Liu","doi":"10.1093/biomtc/ujaf132","DOIUrl":"https://doi.org/10.1093/biomtc/ujaf132","url":null,"abstract":"","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On physically grounded boundary conditions for the compressible MHD system","authors":"Jan Březina , Eduard Feireisl","doi":"10.1016/j.jde.2025.113802","DOIUrl":"10.1016/j.jde.2025.113802","url":null,"abstract":"<div><div>We consider a general compressible MHD system, where the magnetic field propagates in a heterogeneous medium. Using suitable penalization in terms of the transport coefficients we perform several singular limits. As a result we obtain:<ul><li><span>1.</span><span><div>A rigorous justification of physically grounded boundary conditions for the compressible MHD system on a bounded domain.</div></span></li><li><span>2.</span><span><div>Existence of weak solutions for arbitrary finite energy initial data in the situation the Maxwell induction equation holds also outside the fluid domain.</div></span></li><li><span>3.</span><span><div>A suitable theoretical platform for numerical experiments on domains with geometrically complicated boundaries.</div></span></li></ul></div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113802"},"PeriodicalIF":2.3,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Bernstein inequalities for eigenfunctions","authors":"Stefano Decio , Eugenia Malinnikova","doi":"10.1016/j.aim.2025.110564","DOIUrl":"10.1016/j.aim.2025.110564","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. We show that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> satisfies a local Bernstein inequality; namely for any geodesic ball <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and any <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> the following inequality holds: <span><math><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo></mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ε</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo></mo><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo></math></span>. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"482 ","pages":"Article 110564"},"PeriodicalIF":1.5,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145270065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}