谱乘法器II:椭圆和抛物算子和Bochner-Riesz均值

IF 2.3 2区 数学 Q1 MATHEMATICS
Marius Beceanu, Michael Goldberg
{"title":"谱乘法器II:椭圆和抛物算子和Bochner-Riesz均值","authors":"Marius Beceanu,&nbsp;Michael Goldberg","doi":"10.1016/j.jde.2025.113836","DOIUrl":null,"url":null,"abstract":"<div><div>We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where <em>V</em> is an arbitrarily large rough real-valued scalar potential and <em>H</em> can have negative eigenvalues. All results are in three space dimensions.</div><div>We eliminate several unnecessary conditions on <em>V</em>, leaving just <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the closure of the space of test functions in the global Kato class <span><math><mi>K</mi></math></span>, meaning<span><span><span><math><munder><mi>sup</mi><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>⁡</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>&lt;</mo><mo>∞</mo><mo>.</mo></math></span></span></span></div><div>For the spectral multiplier bounds, we assume that <em>H</em> has no zero or positive energy bound states. For <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we prove that <em>H</em> has at most a finite number of negative bound states. If in addition <span><math><mi>V</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, then by <span><span>[16]</span></span> and <span><span>[20]</span></span> there are no positive energy bound states.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113836"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral multipliers II: Elliptic and parabolic operators and Bochner–Riesz means\",\"authors\":\"Marius Beceanu,&nbsp;Michael Goldberg\",\"doi\":\"10.1016/j.jde.2025.113836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where <em>V</em> is an arbitrarily large rough real-valued scalar potential and <em>H</em> can have negative eigenvalues. All results are in three space dimensions.</div><div>We eliminate several unnecessary conditions on <em>V</em>, leaving just <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the closure of the space of test functions in the global Kato class <span><math><mi>K</mi></math></span>, meaning<span><span><span><math><munder><mi>sup</mi><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>⁡</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>&lt;</mo><mo>∞</mo><mo>.</mo></math></span></span></span></div><div>For the spectral multiplier bounds, we assume that <em>H</em> has no zero or positive energy bound states. For <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we prove that <em>H</em> has at most a finite number of negative bound states. If in addition <span><math><mi>V</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, then by <span><span>[16]</span></span> and <span><span>[20]</span></span> there are no positive energy bound states.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113836\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008630\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008630","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立泊松核、热核和Bochner-Riesz means的估计,定义为H= - Δ+V,其中V是任意大的粗实值标量势,H可以具有负特征值。所有结果都在三维空间中。我们消除了V上几个不必要的条件,只留下V∈K0,其中K0是全局Kato类K中测试函数空间的闭包,意义为∈R3∫R3|V(x)|dx|x−y|<∞。对于谱乘子边界,我们假设H没有零能级或正能级束缚态。对于V∈K0,我们证明了H最多有有限个负界态。如果V∈W˙−1/4,4/3,则到[16]和[20]没有正能束缚态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral multipliers II: Elliptic and parabolic operators and Bochner–Riesz means
We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of H=Δ+V, where V is an arbitrarily large rough real-valued scalar potential and H can have negative eigenvalues. All results are in three space dimensions.
We eliminate several unnecessary conditions on V, leaving just VK0, where K0 is the closure of the space of test functions in the global Kato class K, meaningsupyR3R3|V(x)|dx|xy|<.
For the spectral multiplier bounds, we assume that H has no zero or positive energy bound states. For VK0, we prove that H has at most a finite number of negative bound states. If in addition VW˙1/4,4/3, then by [16] and [20] there are no positive energy bound states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信