{"title":"谱乘法器II:椭圆和抛物算子和Bochner-Riesz均值","authors":"Marius Beceanu, Michael Goldberg","doi":"10.1016/j.jde.2025.113836","DOIUrl":null,"url":null,"abstract":"<div><div>We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where <em>V</em> is an arbitrarily large rough real-valued scalar potential and <em>H</em> can have negative eigenvalues. All results are in three space dimensions.</div><div>We eliminate several unnecessary conditions on <em>V</em>, leaving just <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the closure of the space of test functions in the global Kato class <span><math><mi>K</mi></math></span>, meaning<span><span><span><math><munder><mi>sup</mi><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo><</mo><mo>∞</mo><mo>.</mo></math></span></span></span></div><div>For the spectral multiplier bounds, we assume that <em>H</em> has no zero or positive energy bound states. For <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we prove that <em>H</em> has at most a finite number of negative bound states. If in addition <span><math><mi>V</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, then by <span><span>[16]</span></span> and <span><span>[20]</span></span> there are no positive energy bound states.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113836"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral multipliers II: Elliptic and parabolic operators and Bochner–Riesz means\",\"authors\":\"Marius Beceanu, Michael Goldberg\",\"doi\":\"10.1016/j.jde.2025.113836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where <em>V</em> is an arbitrarily large rough real-valued scalar potential and <em>H</em> can have negative eigenvalues. All results are in three space dimensions.</div><div>We eliminate several unnecessary conditions on <em>V</em>, leaving just <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the closure of the space of test functions in the global Kato class <span><math><mi>K</mi></math></span>, meaning<span><span><span><math><munder><mi>sup</mi><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo><</mo><mo>∞</mo><mo>.</mo></math></span></span></span></div><div>For the spectral multiplier bounds, we assume that <em>H</em> has no zero or positive energy bound states. For <span><math><mi>V</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we prove that <em>H</em> has at most a finite number of negative bound states. If in addition <span><math><mi>V</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, then by <span><span>[16]</span></span> and <span><span>[20]</span></span> there are no positive energy bound states.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113836\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008630\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008630","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral multipliers II: Elliptic and parabolic operators and Bochner–Riesz means
We establish estimates for the Poisson kernel, the heat kernel, and Bochner–Riesz means defined in terms of , where V is an arbitrarily large rough real-valued scalar potential and H can have negative eigenvalues. All results are in three space dimensions.
We eliminate several unnecessary conditions on V, leaving just , where is the closure of the space of test functions in the global Kato class , meaning
For the spectral multiplier bounds, we assume that H has no zero or positive energy bound states. For , we prove that H has at most a finite number of negative bound states. If in addition , then by [16] and [20] there are no positive energy bound states.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics