特征函数的局部Bernstein不等式

IF 1.5 1区 数学 Q1 MATHEMATICS
Stefano Decio , Eugenia Malinnikova
{"title":"特征函数的局部Bernstein不等式","authors":"Stefano Decio ,&nbsp;Eugenia Malinnikova","doi":"10.1016/j.aim.2025.110564","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. We show that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> satisfies a local Bernstein inequality; namely for any geodesic ball <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> the following inequality holds: <span><math><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ε</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo></math></span>. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"482 ","pages":"Article 110564"},"PeriodicalIF":1.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Bernstein inequalities for eigenfunctions\",\"authors\":\"Stefano Decio ,&nbsp;Eugenia Malinnikova\",\"doi\":\"10.1016/j.aim.2025.110564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. We show that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> satisfies a local Bernstein inequality; namely for any geodesic ball <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> the following inequality holds: <span><math><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ε</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo></math></span>. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"482 \",\"pages\":\"Article 110564\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004621\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004621","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设φλ是光滑紧黎曼流形上Laplace-Beltrami算子的特征函数,即Δgφλ+λφλ=0。证明φλ满足局部Bernstein不等式;即对于任意测地线球B(x,r)和任意ε>;0,有以下不等式成立:supBg(x,r) δ |∇φλ|≤Cελ1+εrsupBg(x,r) δ |φλ|。我们还用频率函数证明了椭圆偏微分方程解的类似不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Bernstein inequalities for eigenfunctions
Let φλ be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that Δgφλ+λφλ=0. We show that φλ satisfies a local Bernstein inequality; namely for any geodesic ball B(x,r) and any ε>0 the following inequality holds: supBg(x,r)|φλ|Cελ1+εrsupBg(x,r)|φλ|. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信