{"title":"约翰逊图的核J(N,D)","authors":"Kazumasa Nomura , Paul Terwilliger","doi":"10.1016/j.disc.2025.114844","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is about the nucleus of the Johnson graph <span><math><mi>Γ</mi><mo>=</mo><mi>J</mi><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>N</mi><mo>></mo><mn>2</mn><mi>D</mi></math></span>. The nucleus is described as follows. Let <em>X</em> denote the vertex set of Γ. Let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> denote the adjacency matrix of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote the <em>Q</em>-polynomial ordering of the primitive idempotents of <em>A</em>. Fix <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. The corresponding dual adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the diagonal matrix in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> such that for <span><math><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> the <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is equal to the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><mo>|</mo><mi>X</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> the diagonal matrix <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is the projection onto the <em>i</em>th subconstituent of Γ with respect to <em>x</em>. The matrices <span><math><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> are the primitive idempotents of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. The subalgebra <em>T</em> of <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> generated by <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is called the subconstituent algebra of Γ with respect to <em>x</em>. Let <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msup></math></span> denote the standard module of Γ. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> define<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>(</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>)</mo><mo>∩</mo><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>V</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi><mo>−</mo><mi>i</mi></mrow></msub><mi>V</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is known that the sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is direct, and <span><math><mi>N</mi></math></span> is a <em>T</em>-module. This <em>T</em>-module <span><math><mi>N</mi></math></span> is called the nucleus of Γ with respect to <em>x</em>. The sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> is direct. In this paper we consider the following vectors in <em>V</em>. For a subset <span><math><mi>α</mi><mo>⊆</mo><mi>x</mi></math></span> let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> that contain <em>α</em>. Let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> whose intersection with <em>x</em> is equal to <em>α</em>. We show that (i) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (ii) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (iii) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span>; (iv) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give the transition matrices between the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. We give the actions of <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> on the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> we characterize the basis vectors for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the <em>i</em>th subconstituent of Γ with respect to <em>x</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114844"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nucleus of the Johnson graph J(N,D)\",\"authors\":\"Kazumasa Nomura , Paul Terwilliger\",\"doi\":\"10.1016/j.disc.2025.114844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is about the nucleus of the Johnson graph <span><math><mi>Γ</mi><mo>=</mo><mi>J</mi><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>N</mi><mo>></mo><mn>2</mn><mi>D</mi></math></span>. The nucleus is described as follows. Let <em>X</em> denote the vertex set of Γ. Let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> denote the adjacency matrix of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote the <em>Q</em>-polynomial ordering of the primitive idempotents of <em>A</em>. Fix <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. The corresponding dual adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the diagonal matrix in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> such that for <span><math><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> the <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is equal to the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><mo>|</mo><mi>X</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> the diagonal matrix <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is the projection onto the <em>i</em>th subconstituent of Γ with respect to <em>x</em>. The matrices <span><math><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> are the primitive idempotents of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. The subalgebra <em>T</em> of <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> generated by <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is called the subconstituent algebra of Γ with respect to <em>x</em>. Let <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msup></math></span> denote the standard module of Γ. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> define<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>(</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>)</mo><mo>∩</mo><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>V</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi><mo>−</mo><mi>i</mi></mrow></msub><mi>V</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is known that the sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is direct, and <span><math><mi>N</mi></math></span> is a <em>T</em>-module. This <em>T</em>-module <span><math><mi>N</mi></math></span> is called the nucleus of Γ with respect to <em>x</em>. The sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> is direct. In this paper we consider the following vectors in <em>V</em>. For a subset <span><math><mi>α</mi><mo>⊆</mo><mi>x</mi></math></span> let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> that contain <em>α</em>. Let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> whose intersection with <em>x</em> is equal to <em>α</em>. We show that (i) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (ii) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (iii) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span>; (iv) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give the transition matrices between the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. We give the actions of <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> on the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> we characterize the basis vectors for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the <em>i</em>th subconstituent of Γ with respect to <em>x</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114844\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004522\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper is about the nucleus of the Johnson graph with . The nucleus is described as follows. Let X denote the vertex set of Γ. Let denote the adjacency matrix of Γ. Let denote the Q-polynomial ordering of the primitive idempotents of A. Fix . The corresponding dual adjacency matrix is the diagonal matrix in such that for the -entry of is equal to the -entry of . For the diagonal matrix is the projection onto the ith subconstituent of Γ with respect to x. The matrices are the primitive idempotents of . The subalgebra T of generated by A, is called the subconstituent algebra of Γ with respect to x. Let denote the standard module of Γ. For define It is known that the sum is direct, and is a T-module. This T-module is called the nucleus of Γ with respect to x. The sum is direct. In this paper we consider the following vectors in V. For a subset let denote the characteristic vector of the set of vertices in X that contain α. Let denote the characteristic vector of the set of vertices in X whose intersection with x is equal to α. We show that (i) the vectors form a basis of ; (ii) the vectors form a basis of ; (iii) for , the vectors form a basis of ; (iv) for , the vectors form a basis of . We give the transition matrices between the bases and . We give the actions of A, on the bases and . For we characterize the basis vectors for in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the ith subconstituent of Γ with respect to x.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.