约翰逊图的核J(N,D)

IF 0.7 3区 数学 Q2 MATHEMATICS
Kazumasa Nomura , Paul Terwilliger
{"title":"约翰逊图的核J(N,D)","authors":"Kazumasa Nomura ,&nbsp;Paul Terwilliger","doi":"10.1016/j.disc.2025.114844","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is about the nucleus of the Johnson graph <span><math><mi>Γ</mi><mo>=</mo><mi>J</mi><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>N</mi><mo>&gt;</mo><mn>2</mn><mi>D</mi></math></span>. The nucleus is described as follows. Let <em>X</em> denote the vertex set of Γ. Let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> denote the adjacency matrix of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote the <em>Q</em>-polynomial ordering of the primitive idempotents of <em>A</em>. Fix <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. The corresponding dual adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the diagonal matrix in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> such that for <span><math><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> the <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is equal to the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><mo>|</mo><mi>X</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> the diagonal matrix <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is the projection onto the <em>i</em>th subconstituent of Γ with respect to <em>x</em>. The matrices <span><math><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> are the primitive idempotents of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. The subalgebra <em>T</em> of <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> generated by <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is called the subconstituent algebra of Γ with respect to <em>x</em>. Let <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msup></math></span> denote the standard module of Γ. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> define<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>(</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>)</mo><mo>∩</mo><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>V</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi><mo>−</mo><mi>i</mi></mrow></msub><mi>V</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is known that the sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is direct, and <span><math><mi>N</mi></math></span> is a <em>T</em>-module. This <em>T</em>-module <span><math><mi>N</mi></math></span> is called the nucleus of Γ with respect to <em>x</em>. The sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> is direct. In this paper we consider the following vectors in <em>V</em>. For a subset <span><math><mi>α</mi><mo>⊆</mo><mi>x</mi></math></span> let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> that contain <em>α</em>. Let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> whose intersection with <em>x</em> is equal to <em>α</em>. We show that (i) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (ii) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (iii) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span>; (iv) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give the transition matrices between the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. We give the actions of <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> on the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> we characterize the basis vectors for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the <em>i</em>th subconstituent of Γ with respect to <em>x</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114844"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nucleus of the Johnson graph J(N,D)\",\"authors\":\"Kazumasa Nomura ,&nbsp;Paul Terwilliger\",\"doi\":\"10.1016/j.disc.2025.114844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is about the nucleus of the Johnson graph <span><math><mi>Γ</mi><mo>=</mo><mi>J</mi><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>N</mi><mo>&gt;</mo><mn>2</mn><mi>D</mi></math></span>. The nucleus is described as follows. Let <em>X</em> denote the vertex set of Γ. Let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> denote the adjacency matrix of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote the <em>Q</em>-polynomial ordering of the primitive idempotents of <em>A</em>. Fix <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. The corresponding dual adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the diagonal matrix in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> such that for <span><math><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> the <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is equal to the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>-entry of <span><math><mo>|</mo><mi>X</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> the diagonal matrix <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is the projection onto the <em>i</em>th subconstituent of Γ with respect to <em>x</em>. The matrices <span><math><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> are the primitive idempotents of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. The subalgebra <em>T</em> of <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> generated by <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is called the subconstituent algebra of Γ with respect to <em>x</em>. Let <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msup></math></span> denote the standard module of Γ. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> define<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>(</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>V</mi><mo>)</mo><mo>∩</mo><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>V</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>V</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi><mo>−</mo><mi>i</mi></mrow></msub><mi>V</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is known that the sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is direct, and <span><math><mi>N</mi></math></span> is a <em>T</em>-module. This <em>T</em>-module <span><math><mi>N</mi></math></span> is called the nucleus of Γ with respect to <em>x</em>. The sum <span><math><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> is direct. In this paper we consider the following vectors in <em>V</em>. For a subset <span><math><mi>α</mi><mo>⊆</mo><mi>x</mi></math></span> let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> that contain <em>α</em>. Let <span><math><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∈</mo><mi>V</mi></math></span> denote the characteristic vector of the set of vertices in <em>X</em> whose intersection with <em>x</em> is equal to <em>α</em>. We show that (i) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (ii) the vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> form a basis of <span><math><mi>N</mi></math></span>; (iii) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span>; (iv) for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span>, the vectors <span><math><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mspace></mspace><mo>|</mo><mspace></mspace><mi>α</mi><mo>⊆</mo><mi>x</mi><mo>,</mo><mspace></mspace><mo>|</mo><mi>α</mi><mo>|</mo><mo>=</mo><mi>D</mi><mo>−</mo><mi>i</mi><mo>}</mo></math></span> form a basis of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give the transition matrices between the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. We give the actions of <em>A</em>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> on the bases <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>α</mi><mo>⊆</mo><mi>x</mi></mrow></msub></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi></math></span> we characterize the basis vectors for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>N</mi></math></span> in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the <em>i</em>th subconstituent of Γ with respect to <em>x</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114844\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004522\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Johnson图Γ=J(N,D)与N>;2D的核。原子核的描述如下。设X表示Γ的顶点集。设A∈MatX(C)表示Γ的邻接矩阵。设{Ei}i=0D表示a的本原幂等函数的q -多项式排序。对应的对偶邻接矩阵A是MatX(C)中的对角矩阵,使得对于y∈X, A的(y,y)项等于|X|E1的(X,y)项。对于0≤i≤D,对角矩阵Ei∈MatX(C)是Γ关于x的第i子成分的投影。矩阵{Ei}i=0D是A的原始幂等。MatX(C)的子代数T由A, A, A, f生成,称为Γ关于x的子代数。设V=CX表示Γ的标准模。我0≤≤D defineNi = (E0⁎V + E1⁎V +⋯+ Ei⁎V)∩(E0V + E1V +⋯+ ED−iV)。已知和N=∑i=0DNi为正函数,且N为t模。这个t模N被称为Γ相对于x的核。和N=∑i=0DEi N是直接的。本文考虑V中的下列向量,对于一个子集α∈x,让α∨∈V表示x中包含α的顶点集合的特征向量。设α n∈V表示X中与X相交等于α的顶点集合的特征向量。我们证明(i)向量{α∨}α∧x构成N的一组基;(ii)向量{αN}α∧x构成N的一组基;(iii)当0≤i≤D时,向量{αN|α≤x,|α|=D - i}构成Ei N的基;(iv)对于0≤i≤D,向量{α∨|α∧x,|α|=D - i}构成Ni的一组基。给出基{α∨}α⊥x与{α n}α⊥x之间的转移矩阵。我们给出了A、A在{α α n}、{α n}两个基上的作用。对于0≤i≤D,我们通过调整Γ的第i个子成分上的Γ子图的边,得到的某图的连通分量来表征Ei N的基向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nucleus of the Johnson graph J(N,D)
This paper is about the nucleus of the Johnson graph Γ=J(N,D) with N>2D. The nucleus is described as follows. Let X denote the vertex set of Γ. Let AMatX(C) denote the adjacency matrix of Γ. Let {Ei}i=0D denote the Q-polynomial ordering of the primitive idempotents of A. Fix xX. The corresponding dual adjacency matrix A is the diagonal matrix in MatX(C) such that for yX the (y,y)-entry of A is equal to the (x,y)-entry of |X|E1. For 0iD the diagonal matrix EiMatX(C) is the projection onto the ith subconstituent of Γ with respect to x. The matrices {Ei}i=0D are the primitive idempotents of A. The subalgebra T of MatX(C) generated by A, A is called the subconstituent algebra of Γ with respect to x. Let V=CX denote the standard module of Γ. For 0iD defineNi=(E0V+E1V++EiV)(E0V+E1V++EDiV). It is known that the sum N=i=0DNi is direct, and N is a T-module. This T-module N is called the nucleus of Γ with respect to x. The sum N=i=0DEiN is direct. In this paper we consider the following vectors in V. For a subset αx let αV denote the characteristic vector of the set of vertices in X that contain α. Let αNV denote the characteristic vector of the set of vertices in X whose intersection with x is equal to α. We show that (i) the vectors {α}αx form a basis of N; (ii) the vectors {αN}αx form a basis of N; (iii) for 0iD, the vectors {αN|αx,|α|=Di} form a basis of EiN; (iv) for 0iD, the vectors {α|αx,|α|=Di} form a basis of Ni. We give the transition matrices between the bases {α}αx and {αN}αx. We give the actions of A, A on the bases {α}αx and {αN}αx. For 0iD we characterize the basis vectors for EiN in terms of the connected components of a certain graph obtained by adjusting the edges of the subgraph of Γ induced on the ith subconstituent of Γ with respect to x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信