{"title":"对称强电路消除特性","authors":"Christine Cho , James Oxley , Suijie Wang","doi":"10.1016/j.aam.2025.102983","DOIUrl":null,"url":null,"abstract":"<div><div>If <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are circuits in a matroid <em>M</em> with <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <em>e</em> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then <em>M</em> has a circuit <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that <span><math><mi>e</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. This strong circuit elimination axiom is inherently asymmetric. A matroid <em>M</em> has the symmetric strong circuit elimination property (SSCE) if, when the above conditions hold and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, there is a circuit <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> with <span><math><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>⊆</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. We prove that a connected matroid has this property if and only if it has no two skew circuits. We also characterize such matroids in terms of forbidden series minors, and we give a new matroid axiom system that is built around a modification of SSCE.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102983"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The symmetric strong circuit elimination property\",\"authors\":\"Christine Cho , James Oxley , Suijie Wang\",\"doi\":\"10.1016/j.aam.2025.102983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>If <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are circuits in a matroid <em>M</em> with <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <em>e</em> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then <em>M</em> has a circuit <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that <span><math><mi>e</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. This strong circuit elimination axiom is inherently asymmetric. A matroid <em>M</em> has the symmetric strong circuit elimination property (SSCE) if, when the above conditions hold and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, there is a circuit <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> with <span><math><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>⊆</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊆</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>e</mi></math></span>. We prove that a connected matroid has this property if and only if it has no two skew circuits. We also characterize such matroids in terms of forbidden series minors, and we give a new matroid axiom system that is built around a modification of SSCE.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"173 \",\"pages\":\"Article 102983\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825001459\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
If and are circuits in a matroid M with in and e in , then M has a circuit such that . This strong circuit elimination axiom is inherently asymmetric. A matroid M has the symmetric strong circuit elimination property (SSCE) if, when the above conditions hold and , there is a circuit with . We prove that a connected matroid has this property if and only if it has no two skew circuits. We also characterize such matroids in terms of forbidden series minors, and we give a new matroid axiom system that is built around a modification of SSCE.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.