{"title":"Local Bernstein inequalities for eigenfunctions","authors":"Stefano Decio , Eugenia Malinnikova","doi":"10.1016/j.aim.2025.110564","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. We show that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> satisfies a local Bernstein inequality; namely for any geodesic ball <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and any <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> the following inequality holds: <span><math><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo></mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ε</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup></mrow><mrow><mi>r</mi></mrow></mfrac><msub><mrow><mi>sup</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></msub><mo></mo><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>|</mo></math></span>. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"482 ","pages":"Article 110564"},"PeriodicalIF":1.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004621","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold, meaning that . We show that satisfies a local Bernstein inequality; namely for any geodesic ball and any the following inequality holds: . We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.