{"title":"Scattering for the quartic generalized Benjamin–Bona–Mahony equation","authors":"A. George Morgan","doi":"10.1016/j.na.2025.113909","DOIUrl":"10.1016/j.na.2025.113909","url":null,"abstract":"<div><div>The generalized Benjamin–Bona–Mahony equation (gBBM) models nonlinear waves in dispersive media. In the long-wave limit, gBBM is approximately equivalent to the generalized Korteweg–de Vries equation (gKdV). While the long-time behaviour of small solutions to gKdV is well-understood, the corresponding theory for gBBM has progressed little since the 1990s. Using a space–time resonance approach, I establish linear dispersive decay and scattering for small solutions to the quartic-nonlinear gBBM. To my knowledge, this result provides the first global-in-time pointwise estimates on small solutions to gBBM with a nonlinear power less than or equal to five. Owing to nonzero inflection points in the linearized gBBM dispersion relation, there exist isolated space–time resonances without null structure, but in the course of the proof I show these resonances do not obstruct scattering.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113909"},"PeriodicalIF":1.3,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144757567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundary regularity for nonlocal elliptic equations over Reifenberg flat domains","authors":"Adriano Prade","doi":"10.1016/j.na.2025.113908","DOIUrl":"10.1016/j.na.2025.113908","url":null,"abstract":"<div><div>We prove sharp boundary regularity of solutions to nonlocal elliptic equations arising from operators comparable to the fractional Laplacian over Reifenberg flat sets and with null exterior condition. More precisely, if the operator has order <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span> then the solution is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mo>−</mo><mi>ɛ</mi></mrow></msup></math></span> regular for all <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> provided the flatness parameter is small enough. The proof relies on an induction argument and its main ingredients are the construction of a suitable barrier and the comparison principle.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113908"},"PeriodicalIF":1.3,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144757568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional Chern–Simons–Higgs models on finite graphs via a topological degree approach","authors":"Chunlian Liu , Ziyi Chen , Linfeng Wang","doi":"10.1016/j.na.2025.113910","DOIUrl":"10.1016/j.na.2025.113910","url":null,"abstract":"<div><div>We investigate the fractional Chern–Simons–Higgs models of the form <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>f</mi></mrow></math></span></span></span>on a connected finite graph, where <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> is the fractional Laplace operator, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mi>λ</mi></math></span> is a real number, <span><math><mi>p</mi></math></span> is a non-negative integer, and <span><math><mi>f</mi></math></span> is a function on the graph. We focus on the fractional Laplace operator defined with heat kernels and employ the topological degree theory as our main tool. First, we prove that all solutions to fractional Chern–Simons–Higgs models are uniformly bounded. Second, we calculate the topological degree by discussing the existence of the solution to a homotopy equation case by case. As consequences, we obtain the existence results for the fractional Chern–Simons–Higgs models on a connected finite graph.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113910"},"PeriodicalIF":1.3,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144757566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker
{"title":"Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case","authors":"Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker","doi":"10.1112/jlms.70257","DOIUrl":"https://doi.org/10.1112/jlms.70257","url":null,"abstract":"<p>We provide an explicit construction of the arboreal Galois group for the postcritically finite polynomial <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$f(z) = z^2 +c$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> belongs to some arbitrary field of characteristic not equal to 2. In this first of two papers, we consider the case that the critical point is periodic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Full capacity–volumetry of sharp exp-integrability law","authors":"David R. Adams, Jie Xiao","doi":"10.1112/jlms.70255","DOIUrl":"https://doi.org/10.1112/jlms.70255","url":null,"abstract":"<p>This paper uses law of trichotomy to show a full range of capacity–volumetry of the sharp <span></span><math>\u0000 <semantics>\u0000 <mi>exp</mi>\u0000 <annotation>$exp$</annotation>\u0000 </semantics></math>-integrability law which covers the sharp Adams–Moser–Trudinger <span></span><math>\u0000 <semantics>\u0000 <mi>exp</mi>\u0000 <annotation>$exp$</annotation>\u0000 </semantics></math>-integrability law for higher order derivatives, thereby finding a new approach to a relatively complete family of the essential capacity–volumetric estimates with the optimal constants including the sharp Ahlfors–Beurling–Pólya–Szegö and Morrey–Sobolev capacity–volumetric inequalities.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On nontrivial cross-t-intersecting families","authors":"Dongang He , Anshui Li , Biao Wu , Huajun Zhang","doi":"10.1016/j.jcta.2025.106095","DOIUrl":"10.1016/j.jcta.2025.106095","url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are called nontrivial cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span> and <span><math><mo>|</mo><msub><mrow><mo>⋂</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>A</mi><mo>∪</mo><mi>B</mi></mrow></msub><mi>A</mi><mo>|</mo><mo><</mo><mi>t</mi></math></span>. In this paper we will determine the upper bound of <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span> for nontrivial cross-<em>t</em>-intersecting families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> for positive integers <em>n</em>, <em>k</em>, <em>ℓ</em> and <em>t</em> such that <span><math><mi>n</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ℓ</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>}</mo></math></span> and <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-<em>t</em>-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106095"},"PeriodicalIF":1.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144748719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Yu , Zheng Dai , Tianyu Li , Zhijian Wang , Honghao Ma , Kai Li
{"title":"Self-tapping of a liquid crystal elastomer thin beam above a hot plate","authors":"Yong Yu , Zheng Dai , Tianyu Li , Zhijian Wang , Honghao Ma , Kai Li","doi":"10.1016/j.chaos.2025.116904","DOIUrl":"10.1016/j.chaos.2025.116904","url":null,"abstract":"<div><div>Thermally-driven self-oscillating systems are able to absorb heat from the environment to maintain their own motion, and therefore have a wide range of applications in the fields of signal processing, robotics and energy harvester. Existing thermally-driven self-oscillating systems are always in contact with a hot surface or in a temperature field with a non-contacting heat source, which makes it difficult to dissipate heat quickly and limits the generation of high-frequency oscillations. By introducing intermittent contact with a hot plate, a self-tapping liquid crystal elastomer (LCE) thin beam is experimentally designed in this paper. Based on the existing mature dynamic LCE model, the theoretical model of the thermally-driven self-tapping LCE beam is established, and the mechanism of self-tapping is elucidated. Numerical calculations show that the system exists in two modes of motion: static mode and self-tapping mode, which is consistent with the experimental results. The LCE beam maintains its self-tapping by absorbing the thermal energy from the hot plate to compensate for the damping dissipation during its motion. In addition, the effects of several key parameters on the amplitude and frequency of self-tapping are investigated in detail. Specially, the frequency of self-tapping exceeds 7 Hz, originating from the rapid heat absorption when contacting the hot plate and the rapid heat dissipation in air. This self-tapping system has the advantages of high oscillation frequency, simple structure, flexible regulation, and stability, and has potential applications in practical application scenarios such as thermal sensors, energy capture and micro-robotics.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144748939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Soltani , H. Abdollahzadeh Ahangar , M. Chellali , H. Rahbani , S.M. Sheikholeslami
{"title":"On weak double Roman domination in graphs","authors":"S. Soltani , H. Abdollahzadeh Ahangar , M. Chellali , H. Rahbani , S.M. Sheikholeslami","doi":"10.1016/j.dam.2025.07.019","DOIUrl":"10.1016/j.dam.2025.07.019","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a graph and <span><math><mi>f</mi></math></span> a function defined from <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow><mo>.</mo></mrow></math></span> A vertex <span><math><mi>v</mi></math></span> of <span><math><mi>V</mi></math></span> is said to be doubly unprotected with respect to <span><math><mi>f</mi></math></span> if <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>N</mi><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow></mrow></math></span> is a set consisting of vertex <span><math><mi>v</mi></math></span> and all vertices adjacent to <span><math><mrow><mi>v</mi><mo>.</mo></mrow></math></span> The function <span><math><mi>f</mi></math></span> is said to be a weak double Roman dominating function (WDRD-function) if for every vertex <span><math><mi>v</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span> there is a neighbor <span><math><mi>u</mi></math></span> of <span><math><mi>v</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span> such that the function <span><math><mi>g</mi></math></span> defined by <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>,</mo></mrow></math></span>\u0000 <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> has no doubly unprotected vertex. The weight of a WDRD-function <span><math><mi>f</mi></math></span> is the sum <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, and the weak double Roman domination number <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>w</mi><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> equals the minimum weight of a WDRD-function on <span><math><mrow><mi>G</mi><mo>.</mo></mrow></math></span> First, we show that the associate decision pr","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 307-315"},"PeriodicalIF":1.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144750423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical properties and quantum nature of light in optical cavities combining second- and third-order nonlinearities","authors":"H. Jabri , H. Eleuch","doi":"10.1016/j.chaos.2025.116915","DOIUrl":"10.1016/j.chaos.2025.116915","url":null,"abstract":"<div><div>The squeezing of light is a typical quantum effect arising in nonlinear systems, which is of great importance for quantum sensors and other applications. We investigate a scheme consisting of an optical cavity containing a pair of coupled quantum wells through electronic tunneling. Nonlinear excitonic interactions in the direct and indirect exciton fields are considered. Further, the cavity interacts with an optical parametric oscillator which results in the injection of squeezed photons inside the cavity. We show that the excitonic density in the quantum wells is increased by the external squeezed source. By analytically solving the quantum Langevin equations in the frequency domain and optimizing the noise spectrum of the transmitted light, we show that indirect exciton nonlinearity produces a stronger squeezing than direct exciton nonlinearity. In all scenarios, incorporating the parametric oscillator significantly increase the degree of squeezing. The impact of the second-order nonlinearity is much more noticeable in the weak coupling regime compared to excitonic nonlinearity. Nevertheless, the nonlinearity of the exciton produces higher squeezing than the optical parametric oscillator when the strong coupling regime is reached. We found also that the squeezing effect manifests a high resistance and stability against the thermal baths, in particular in the weak coupling regime. The proposed scheme offers possible applications by significantly reducing noise in a specific frequency range in a compact device.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116915"},"PeriodicalIF":5.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144750734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A criterion space search feasibility pump heuristic for solving maximum multiplicative programs","authors":"Ashim Khanal, Hadi Charkhgard","doi":"10.1016/j.disopt.2025.100903","DOIUrl":"10.1016/j.disopt.2025.100903","url":null,"abstract":"<div><div>We study a class of nonlinear optimization problems with diverse practical applications, particularly in cooperative game theory. These problems are referred to as Maximum Multiplicative Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multi-objective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is specifically designed to search the criterion space of their multi-objective optimization counterparts. Through a computational study, we show the efficacy of the proposed method.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100903"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144738317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}