{"title":"关于非平凡的交叉交集族","authors":"Dongang He , Anshui Li , Biao Wu , Huajun Zhang","doi":"10.1016/j.jcta.2025.106095","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are called nontrivial cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span> and <span><math><mo>|</mo><msub><mrow><mo>⋂</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>A</mi><mo>∪</mo><mi>B</mi></mrow></msub><mi>A</mi><mo>|</mo><mo><</mo><mi>t</mi></math></span>. In this paper we will determine the upper bound of <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span> for nontrivial cross-<em>t</em>-intersecting families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> for positive integers <em>n</em>, <em>k</em>, <em>ℓ</em> and <em>t</em> such that <span><math><mi>n</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ℓ</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>}</mo></math></span> and <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-<em>t</em>-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106095"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nontrivial cross-t-intersecting families\",\"authors\":\"Dongang He , Anshui Li , Biao Wu , Huajun Zhang\",\"doi\":\"10.1016/j.jcta.2025.106095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are called nontrivial cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span> and <span><math><mo>|</mo><msub><mrow><mo>⋂</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>A</mi><mo>∪</mo><mi>B</mi></mrow></msub><mi>A</mi><mo>|</mo><mo><</mo><mi>t</mi></math></span>. In this paper we will determine the upper bound of <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span> for nontrivial cross-<em>t</em>-intersecting families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> for positive integers <em>n</em>, <em>k</em>, <em>ℓ</em> and <em>t</em> such that <span><math><mi>n</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ℓ</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>}</mo></math></span> and <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-<em>t</em>-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106095\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000901\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two families and are called nontrivial cross-t-intersecting if for all , and . In this paper we will determine the upper bound of for nontrivial cross-t-intersecting families and for positive integers n, k, ℓ and t such that and . The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-t-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.