数学最新文献

筛选
英文 中文
Min-min minimization for the fractional ℓ0-regularized problem 分数阶正则化问题的最小最小解
IF 3.5 2区 数学
Applied Mathematics and Computation Pub Date : 2025-05-02 DOI: 10.1016/j.amc.2025.129499
Jun Wang , Qiang Ma , Cheng Zhou
{"title":"Min-min minimization for the fractional ℓ0-regularized problem","authors":"Jun Wang ,&nbsp;Qiang Ma ,&nbsp;Cheng Zhou","doi":"10.1016/j.amc.2025.129499","DOIUrl":"10.1016/j.amc.2025.129499","url":null,"abstract":"<div><div>In this paper, we present a novel unconstrained fractional <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> regularization (<span>FL0R</span>) model to solve cardinality minimization. Firstly, we construct an interesting <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization from <span>FL0R</span> by introducing a middle variable of sparsity. Then, we prove that the solution to <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization with a given sparsity is one of <span>FL0R</span>. Finally, some numerical examples are presented to illustrate the effectiveness and validity of the new model.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"503 ","pages":"Article 129499"},"PeriodicalIF":3.5,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dirichlet problem on perturbed conical domains via converging generalized power series 用收敛广义幂级数求解摄动圆锥域上的Dirichlet问题
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-05-02 DOI: 10.1016/j.jde.2025.113379
Martin Costabel , Matteo Dalla Riva , Monique Dauge , Paolo Musolino
{"title":"Dirichlet problem on perturbed conical domains via converging generalized power series","authors":"Martin Costabel ,&nbsp;Matteo Dalla Riva ,&nbsp;Monique Dauge ,&nbsp;Paolo Musolino","doi":"10.1016/j.jde.2025.113379","DOIUrl":"10.1016/j.jde.2025.113379","url":null,"abstract":"<div><div>We consider the Poisson equation with homogeneous Dirichlet conditions in a family of domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> indexed by a small parameter <em>ε</em>. The domains depend on <em>ε</em> only within a ball of radius proportional to <em>ε</em> and, as <em>ε</em> tends to zero, they converge in a self-similar way to a domain with a conical boundary singularity. We construct an expansion of the solution as a series of real positive powers of <em>ε</em>, and prove that it is not just an asymptotic expansion as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, but that, for small values of <em>ε</em>, it converges normally in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. The phenomenon that solutions to boundary value problems on singularly perturbed domains may have <em>convergent</em> expansions is the subject of the Functional Analytic Approach by Lanza de Cristoforis and his collaborators. This approach was originally adopted to study small holes shrinking to interior points of a smooth domain and heavily relies on integral representations obtained through layer potentials. We choose a different technique that allows us to relax all regularity assumptions. We forgo boundary layer potentials and instead exploit expansions in terms of eigenfunctions of the Laplace-Beltrami operator on the intersection of the cone with the unit sphere. The basis for our analysis is a two-scale cross-cutoff ansatz for the solution that has similarities with the Maz'ya-Nazarov-Plamenevskij construction of a multiscale system for the asymptotic expansion of solutions of boundary value problems on domains singularly perturbed near singular points of the boundary. Specifically, we write the solution as a sum of a function in the slow variable multiplied by a cutoff function depending on the fast variable, plus a function in the fast variable multiplied by a cutoff function depending on the slow variable. While the cutoffs are considered fixed, the two unknown functions are solutions to a <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> system of partial differential equations that depend on <em>ε</em> in a way that can be analyzed in the framework of generalized power series when the right-hand side of the Poisson equation vanishes in a neighborhood of the perturbation. In this paper, we concentrate on this case. The treatment of more general right-hand sides requires a supplementary layer in the analysis and is postponed to a forthcoming paper.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113379"},"PeriodicalIF":2.4,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal coloring of (P2 + P3, gem)-free graphs (P2 + P3, gem)无图形的最优着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-02 DOI: 10.1016/j.disc.2025.114554
Arnab Char, T. Karthick
{"title":"Optimal coloring of (P2 + P3, gem)-free graphs","authors":"Arnab Char,&nbsp;T. Karthick","doi":"10.1016/j.disc.2025.114554","DOIUrl":"10.1016/j.disc.2025.114554","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a graph &lt;em&gt;G&lt;/em&gt;, the parameters &lt;span&gt;&lt;math&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; respectively denote the chromatic number and the clique number of &lt;em&gt;G&lt;/em&gt;. A function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called a &lt;em&gt;χ-binding function&lt;/em&gt; for the given class of graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; if every &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; satisfies &lt;span&gt;&lt;math&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and the &lt;em&gt;smallest χ-binding function&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined as &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mtext&gt; and &lt;/mtext&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. In general, the problem of obtaining the smallest &lt;em&gt;χ&lt;/em&gt;-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free graphs, and prove that the function &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; defined by &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; is the smallest &lt;em&gt;χ&lt;/em&gt;-binding function for the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free graphs. Also we completely characterize the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114554"},"PeriodicalIF":0.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph 格图上Thomas-Fermi-Dirac-von Weizsäcker模型极小器的存在性与不存在性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-05-02 DOI: 10.1016/j.jde.2025.113360
Yong Liu , Jun Wang , Kun Wang , Wen Yang , Yanni Zhu
{"title":"Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph","authors":"Yong Liu ,&nbsp;Jun Wang ,&nbsp;Kun Wang ,&nbsp;Wen Yang ,&nbsp;Yanni Zhu","doi":"10.1016/j.jde.2025.113360","DOIUrl":"10.1016/j.jde.2025.113360","url":null,"abstract":"<div><div>The focus of our paper is to investigate the possibility of a minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model on the lattice graph <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The model is described by the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>φ</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>−</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mspace></mspace><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> with the additional constraint that <span><math><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>m</mi></math></span>. We begin by establishing the existence of a minimizer for this model when <em>m</em> is sufficiently small. Conversely, we demonstrate that no minimizer exists when <em>m</em> exceeds a certain threshold. Additionally, we extend our analysis to a subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and prove the nonexistence of a minimizer for the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>=</mo><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>Ω</mi></mrow><mrow><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> under the constraint that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mi>V</mi></math></span> is sufficiently large.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113360"},"PeriodicalIF":2.4,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse coefficient problems for the heat equation with fractional Laplacian 分数阶拉普拉斯热方程的反系数问题
IF 3 2区 数学
Fractional Calculus and Applied Analysis Pub Date : 2025-05-02 DOI: 10.1007/s13540-025-00414-4
Azizbek Mamanazarov, Durvudkhan Suragan
{"title":"Inverse coefficient problems for the heat equation with fractional Laplacian","authors":"Azizbek Mamanazarov, Durvudkhan Suragan","doi":"10.1007/s13540-025-00414-4","DOIUrl":"https://doi.org/10.1007/s13540-025-00414-4","url":null,"abstract":"<p>In the present paper, we study inverse problems related to determining the time-dependent coefficient and unknown source function of fractional heat equations. Our approach shows that having just one set of data at an observation point ensures the existence of a weak solution for the inverse problem. Furthermore, if there is an additional datum at the observation point, it leads to a specific formula for the time-dependent source coefficient. Moreover, we investigate inverse problems involving non-local data of the fractional heat equation.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"14 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A note on the hit problem for the polynomial algebra of six variables and the sixth algebraic transfer” [J. Algebra 613 (2023) 1–31] 关于六变量多项式代数的命中问题及六次代数传递的注解[J]。代数613 (2023)1-31]
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2025-05-02 DOI: 10.1016/j.jalgebra.2025.04.010
Đặng Võ Phúc
{"title":"Corrigendum to “A note on the hit problem for the polynomial algebra of six variables and the sixth algebraic transfer” [J. Algebra 613 (2023) 1–31]","authors":"Đặng Võ Phúc","doi":"10.1016/j.jalgebra.2025.04.010","DOIUrl":"10.1016/j.jalgebra.2025.04.010","url":null,"abstract":"<div><div>In this corrigendum, we are making a slight correction to Remark 3.15 on pages 14–15 of <span><span>[1]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 463-464"},"PeriodicalIF":0.8,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143895761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spatio-temporal radial basis function collocation method based on Hausdorff fractal distance for Hausdorff derivative heat conduction equations in three-dimensional anisotropic materials 三维各向异性材料中Hausdorff导数热传导方程的基于Hausdorff分形距离的时空径向基函数配置方法
IF 3.5 2区 数学
Applied Mathematics and Computation Pub Date : 2025-05-02 DOI: 10.1016/j.amc.2025.129501
Jiayu Wang , Lin Qiu , Yingjie Liang , Fajie Wang
{"title":"A spatio-temporal radial basis function collocation method based on Hausdorff fractal distance for Hausdorff derivative heat conduction equations in three-dimensional anisotropic materials","authors":"Jiayu Wang ,&nbsp;Lin Qiu ,&nbsp;Yingjie Liang ,&nbsp;Fajie Wang","doi":"10.1016/j.amc.2025.129501","DOIUrl":"10.1016/j.amc.2025.129501","url":null,"abstract":"<div><div>In this paper, the spatio-temporal radial basis function (RBF) collocation method based on Hausdorff fractal distance is developed and used to simulate the transient heat transfer problems in anisotropic materials governed by Hausdorff derivative heat conduction equations. We introduce Hausdorff fractal distance into the conventional RBFs, and based on this incorporation, establish a meshless method to address Hausdorff derivative heat conduction problems, in which the anisotropy of the thermal conductivity of the material and spatio-temporal fractal characteristics are taken into account. We set the source points of the collocation method outside the spatial computational domain instead of distributing them within the original domain to further improve the accuracy of the method. Numerical experiments carried out in this study demonstrate the superior performance of the proposed approach compared to the finite element method and traditional RBF collocation method, showing that the developed method can be considered as a competitive tool for simulating Hausdorff derivative transient heat conduction problems in complex geometries.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"502 ","pages":"Article 129501"},"PeriodicalIF":3.5,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143894403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avoiding trusted setup in isogeny-based commitments 在基于等基因的承诺中避免可信设置
IF 1.6 2区 数学
Designs, Codes and Cryptography Pub Date : 2025-05-02 DOI: 10.1007/s10623-025-01633-9
Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia
{"title":"Avoiding trusted setup in isogeny-based commitments","authors":"Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia","doi":"10.1007/s10623-025-01633-9","DOIUrl":"https://doi.org/10.1007/s10623-025-01633-9","url":null,"abstract":"<p>In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a curve of unknown endomorphism ring, and the only known way to generate such supersingular curves is to rely on a trusted party or on some expensive multiparty computation. We observe that if the degree of the endomorphism in play is well chosen, then the knowledge of the endomorphism ring is not sufficient to efficiently compute such an endomorphism and in some particular cases, one can even prove that endomorphism of a certain degree do not exist. Leveraging these observations, we adapt Sterner’s commitment scheme in such a way that the endomorphism ring of the starting curve can be known and public. This allows us to obtain isogeny-based commitment schemes which can be instantiated without trusted setup requirements.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"51 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gauge Transformations and Long-Time Asymptotics for the New Coupled Integrable Dispersionless Equations 新耦合可积无色散方程的规范变换和长渐近性
IF 0.9 3区 数学
Mathematical Physics, Analysis and Geometry Pub Date : 2025-05-02 DOI: 10.1007/s11040-025-09507-1
Xumeng Zhou, Xianguo Geng, Minxin Jia, Yunyun Zhai
{"title":"Gauge Transformations and Long-Time Asymptotics for the New Coupled Integrable Dispersionless Equations","authors":"Xumeng Zhou,&nbsp;Xianguo Geng,&nbsp;Minxin Jia,&nbsp;Yunyun Zhai","doi":"10.1007/s11040-025-09507-1","DOIUrl":"10.1007/s11040-025-09507-1","url":null,"abstract":"<div><p>This work aims to investigate the asymptotic behavior analysis of solutions to the Cauchy problem of new coupled integrable dispersionless equations. Utilizing the gauge transformations, spectral analysis and inverse scattering method, we show that the solutions of new coupled integrable dispersionless equations can be expressed in terms of the solutions of two matrix Riemann–Hilbert problems formulated in the complex <span>(lambda )</span>-plane. Applying the nonlinear steepest descent method to the two associated matrix-valued Riemann–Hilbert problems, we obtain precise leading-order asymptotic formulas and uniform error estimates for the solutions of new coupled integrable dispersionless equations.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"28 2","pages":""},"PeriodicalIF":0.9,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4 对于n+1≤k≤2n−4的完全平衡三部图Kn,n,n的k-路径连通性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-02 DOI: 10.1016/j.dam.2025.04.043
Shasha Li, Xiaoxue Gao, Qihui Jin
{"title":"k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4","authors":"Shasha Li,&nbsp;Xiaoxue Gao,&nbsp;Qihui Jin","doi":"10.1016/j.dam.2025.04.043","DOIUrl":"10.1016/j.dam.2025.04.043","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and a set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of size at least 2, an &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-path&lt;/em&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a path that connects all vertices of &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Two &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-paths &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are said to be &lt;em&gt;internally disjoint&lt;/em&gt; if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;0̸&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denote the maximum number of internally disjoint &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-paths in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-path-connectivity&lt;/em&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is then defined as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Therefore, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is exactly the classical connectivity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is exactly the maximum number of edge-disjoint Hamilton paths in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is established that for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 279-294"},"PeriodicalIF":1.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信