具有交集模态的模态逻辑

IF 0.6 4区 数学 Q3 MATHEMATICS
E. E. Zolin
{"title":"具有交集模态的模态逻辑","authors":"E. E. Zolin","doi":"10.1134/S1064562425700024","DOIUrl":null,"url":null,"abstract":"<p>We give a simple proof of a result recently obtained in [12] on the completeness of modal logics with modality that corresponds to the intersection of accessibility relations in a Kripke model. Completeness is proved for logics in modal languages of two types: one has modalities <span>\\({{\\square }_{1}}, \\ldots ,{{\\square }_{n}}\\)</span> for relations <span>\\({{R}_{1}}, \\ldots ,{{R}_{n}}\\)</span> that satisfy a unimodal logic <i>L</i> and modality <span>\\({{\\square }_{{n + 1}}}\\)</span> for the intersection <span>\\({{R}_{{n + 1}}} = {{R}_{1}} \\cap \\ldots \\cap {{R}_{n}}\\)</span>; the other language has modalities <span>\\({{\\square }_{i}}(i \\in \\Sigma )\\)</span> for relations <i>R</i><sub><i>i</i></sub> that satisfy the logic <i>L</i>, and, for every nonempty subset of indices <span>\\(I \\subseteq \\Sigma \\)</span>, the modality <span>\\({{\\square }_{I}}\\)</span> for the intersection <span>\\(\\bigcap\\nolimits_{i \\in I} {{R}_{i}}\\)</span>. While in [12] the completeness is proved only for logics over <span>\\({\\mathbf{K,KD,KT,K4,S4}}\\)</span>, and <b>S5</b>, we give a “uniform” construction that enables us to obtain completeness for logics with intersection over 15 “traditional” modal logics <b>K</b>Λ for <span>\\(\\Lambda \\subseteq \\{ {\\mathbf{D,T,B,4,5}}\\} \\)</span>. The proof method is based on unraveling a frame and then taking the Horn closure of the resulting frame.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"111 1","pages":"59 - 73"},"PeriodicalIF":0.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Logics with Intersection Modality\",\"authors\":\"E. E. Zolin\",\"doi\":\"10.1134/S1064562425700024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a simple proof of a result recently obtained in [12] on the completeness of modal logics with modality that corresponds to the intersection of accessibility relations in a Kripke model. Completeness is proved for logics in modal languages of two types: one has modalities <span>\\\\({{\\\\square }_{1}}, \\\\ldots ,{{\\\\square }_{n}}\\\\)</span> for relations <span>\\\\({{R}_{1}}, \\\\ldots ,{{R}_{n}}\\\\)</span> that satisfy a unimodal logic <i>L</i> and modality <span>\\\\({{\\\\square }_{{n + 1}}}\\\\)</span> for the intersection <span>\\\\({{R}_{{n + 1}}} = {{R}_{1}} \\\\cap \\\\ldots \\\\cap {{R}_{n}}\\\\)</span>; the other language has modalities <span>\\\\({{\\\\square }_{i}}(i \\\\in \\\\Sigma )\\\\)</span> for relations <i>R</i><sub><i>i</i></sub> that satisfy the logic <i>L</i>, and, for every nonempty subset of indices <span>\\\\(I \\\\subseteq \\\\Sigma \\\\)</span>, the modality <span>\\\\({{\\\\square }_{I}}\\\\)</span> for the intersection <span>\\\\(\\\\bigcap\\\\nolimits_{i \\\\in I} {{R}_{i}}\\\\)</span>. While in [12] the completeness is proved only for logics over <span>\\\\({\\\\mathbf{K,KD,KT,K4,S4}}\\\\)</span>, and <b>S5</b>, we give a “uniform” construction that enables us to obtain completeness for logics with intersection over 15 “traditional” modal logics <b>K</b>Λ for <span>\\\\(\\\\Lambda \\\\subseteq \\\\{ {\\\\mathbf{D,T,B,4,5}}\\\\} \\\\)</span>. The proof method is based on unraveling a frame and then taking the Horn closure of the resulting frame.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"111 1\",\"pages\":\"59 - 73\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562425700024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562425700024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们简单地证明了[12]中最近得到的关于模态逻辑完备性的一个结果,模态对应于Kripke模型中可达关系的交集。在两种类型的模态语言中证明了逻辑的完备性:一种具有满足单模态逻辑L的关系\({{R}_{1}}, \ldots ,{{R}_{n}}\)的模态\({{\square }_{1}}, \ldots ,{{\square }_{n}}\)和交集\({{R}_{{n + 1}}} = {{R}_{1}} \cap \ldots \cap {{R}_{n}}\)的模态\({{\square }_{{n + 1}}}\);另一种语言具有满足逻辑L的关系Ri的模态\({{\square }_{i}}(i \in \Sigma )\),并且对于指标的每个非空子集\(I \subseteq \Sigma \),具有交集\(\bigcap\nolimits_{i \in I} {{R}_{i}}\)的模态\({{\square }_{I}}\)。虽然在[12]中只证明了在\({\mathbf{K,KD,KT,K4,S4}}\)和S5上的逻辑的完备性,但我们给出了一个“统一”构造,使我们能够获得在\(\Lambda \subseteq \{ {\mathbf{D,T,B,4,5}}\} \)上有超过15个“传统”模态逻辑相交的逻辑的完备性KΛ。证明方法是基于展开一个框架,然后采取霍恩关闭所得到的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modal Logics with Intersection Modality

Modal Logics with Intersection Modality

We give a simple proof of a result recently obtained in [12] on the completeness of modal logics with modality that corresponds to the intersection of accessibility relations in a Kripke model. Completeness is proved for logics in modal languages of two types: one has modalities \({{\square }_{1}}, \ldots ,{{\square }_{n}}\) for relations \({{R}_{1}}, \ldots ,{{R}_{n}}\) that satisfy a unimodal logic L and modality \({{\square }_{{n + 1}}}\) for the intersection \({{R}_{{n + 1}}} = {{R}_{1}} \cap \ldots \cap {{R}_{n}}\); the other language has modalities \({{\square }_{i}}(i \in \Sigma )\) for relations Ri that satisfy the logic L, and, for every nonempty subset of indices \(I \subseteq \Sigma \), the modality \({{\square }_{I}}\) for the intersection \(\bigcap\nolimits_{i \in I} {{R}_{i}}\). While in [12] the completeness is proved only for logics over \({\mathbf{K,KD,KT,K4,S4}}\), and S5, we give a “uniform” construction that enables us to obtain completeness for logics with intersection over 15 “traditional” modal logics KΛ for \(\Lambda \subseteq \{ {\mathbf{D,T,B,4,5}}\} \). The proof method is based on unraveling a frame and then taking the Horn closure of the resulting frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信