导出哈密顿“场格”系统的流体动力方程

IF 0.6 4区 数学 Q3 MATHEMATICS
T. V. Dudnikova
{"title":"导出哈密顿“场格”系统的流体动力方程","authors":"T. V. Dudnikova","doi":"10.1134/S1064562424601094","DOIUrl":null,"url":null,"abstract":"<p>We give the rigorous derivation of hydrodynamic equations for an infinite harmonic crystal coupled to the Klein–Gordon field. These equations hold in the hydrodynamic limit, and they should be considered as the analog of the Euler and Navier–Stokes equations for the model under consideration.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"111 1","pages":"20 - 24"},"PeriodicalIF":0.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deriving Hydrodynamic Equations for a Hamiltonian “Field–Lattice” System\",\"authors\":\"T. V. Dudnikova\",\"doi\":\"10.1134/S1064562424601094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give the rigorous derivation of hydrodynamic equations for an infinite harmonic crystal coupled to the Klein–Gordon field. These equations hold in the hydrodynamic limit, and they should be considered as the analog of the Euler and Navier–Stokes equations for the model under consideration.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"111 1\",\"pages\":\"20 - 24\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424601094\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424601094","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了耦合于克莱因-戈登场的无限谐波晶体的水动力方程的严格推导。这些方程在水动力极限下成立,它们应该被认为是所考虑模型的欧拉方程和纳维-斯托克斯方程的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving Hydrodynamic Equations for a Hamiltonian “Field–Lattice” System

We give the rigorous derivation of hydrodynamic equations for an infinite harmonic crystal coupled to the Klein–Gordon field. These equations hold in the hydrodynamic limit, and they should be considered as the analog of the Euler and Navier–Stokes equations for the model under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信