On nontrivial cross-t-intersecting families

IF 1.2 2区 数学 Q2 MATHEMATICS
Dongang He , Anshui Li , Biao Wu , Huajun Zhang
{"title":"On nontrivial cross-t-intersecting families","authors":"Dongang He ,&nbsp;Anshui Li ,&nbsp;Biao Wu ,&nbsp;Huajun Zhang","doi":"10.1016/j.jcta.2025.106095","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are called nontrivial cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span> and <span><math><mo>|</mo><msub><mrow><mo>⋂</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>A</mi><mo>∪</mo><mi>B</mi></mrow></msub><mi>A</mi><mo>|</mo><mo>&lt;</mo><mi>t</mi></math></span>. In this paper we will determine the upper bound of <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span> for nontrivial cross-<em>t</em>-intersecting families <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> for positive integers <em>n</em>, <em>k</em>, <em>ℓ</em> and <em>t</em> such that <span><math><mi>n</mi><mo>≥</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ℓ</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>}</mo></math></span> and <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-<em>t</em>-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106095"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two families A([n]k) and B([n]) are called nontrivial cross-t-intersecting if |AB|t for all AA, BB and |AABA|<t. In this paper we will determine the upper bound of |A||B| for nontrivial cross-t-intersecting families A([n]k) and B([n]) for positive integers n, k, and t such that nmax{(t+1)(kt+1),(t+1)(t+1)} and t3. The structures of the extremal families attaining the upper bound are also characterized. As a byproduct of the main result in this paper, one product version of Erdős–Ko–Rado Theorem for two families of cross-t-intersecting can be easily obtained which gives a confirmative answer to one conjecture by Tokushige.
关于非平凡的交叉交集族
对于所有A∈A, B∈B, |A∈A∪BA|<t,当|A∩B|≥t时,称两个族A ([n]k)和B ([n] r)为非平凡正交相交。在正整数n、k、r、t的条件下,确定非平凡正交族A ([n]k)和B ([n] r)的|A||B|的上界,使n≥max (t+1)(k−t+1),(t+1)(r−t+1)}, t≥3。对达到上界的极族结构也进行了表征。作为本文主要结果的副产品,我们可以很容易地得到两族交叉相交的Erdős-Ko-Rado定理的一个乘积版本,从而证实了Tokushige的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信