工业工程最新文献

筛选
英文 中文
[Research progress of the interaction between RAAS and clock genes in cardiovascular diseases]. [心血管疾病中RAAS与时钟基因相互作用的研究进展]。
生理学报 Pub Date : 2025-08-25 DOI: 10.13294/j.aps.2025.0064
Rui-Ling Ma, Yi-Yuan Wang, Yu-Shun Kou, Lu-Fan Shen, Hong Wang, Ling-Na Zhang, Jiao Tian, Lin Yi
{"title":"[Research progress of the interaction between RAAS and clock genes in cardiovascular diseases].","authors":"Rui-Ling Ma, Yi-Yuan Wang, Yu-Shun Kou, Lu-Fan Shen, Hong Wang, Ling-Na Zhang, Jiao Tian, Lin Yi","doi":"10.13294/j.aps.2025.0064","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0064","url":null,"abstract":"<p><p>The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 4","pages":"669-677"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian rhythms and their roles in the pathogenesis and treatment of depression. 生理节律及其在抑郁症发病机制和治疗中的作用。
生理学报 Pub Date : 2025-08-25 DOI: 10.13294/j.aps.2025.0067
William Kojo Smith, Zhao-Min Zhong, Willow Tsanzi Wang, Najm Ul Hassan, Moheb Khan, Han Wang
{"title":"Circadian rhythms and their roles in the pathogenesis and treatment of depression.","authors":"William Kojo Smith, Zhao-Min Zhong, Willow Tsanzi Wang, Najm Ul Hassan, Moheb Khan, Han Wang","doi":"10.13294/j.aps.2025.0067","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0067","url":null,"abstract":"<p><p>Major depressive disorder (MDD) affects people all over the world, and yet, its etiology is complex and remains incompletely understood. In this review, we aim to assess recent advances in understanding depression and its regulation, as well as its interaction with circadian rhythms. Circadian rhythms are internalized representations of the periodic daily light and dark cycles. Accumulating evidence has shown that MDD and the related mental disorders are associated with disrupted circadian rhythms. In particular, depression has often been linked to abnormalities in circadian rhythms because dysregulation of the circadian system increases susceptibility to MDD. The fact that several rhythms are disrupted in depressed patients suggests that these disruptions are not restricted to any one rhythm but rather involve the molecular circadian clock core machinery. The sleep-wake cycle is one rhythm that is often disrupted in depression, which often leads to disturbances in other rhythms. The circadian disruptions manifested in depressed patients and the effectiveness and fast action of chronobiologically based treatments highlight the circadian system as a key therapeutic target in the treatment of depression. This review assesses the evidence on rising depression rates and examines their contributing factors, including circadian misalignment. We discuss key hypotheses underlying depression pathogenesis, potential etiology, and relevant animal models, and underscore potential mechanisms driving depression's growing burden and how understanding these factors is critical for improving prevention and treatment strategies.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 4","pages":"689-711"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Preparation and application of conductive fiber coated with liquid metal]. [液态金属包覆导电纤维的制备与应用]。
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202507019
Chengfeng Liu, Jiabo Tang, Ming Li, Shihao Zhang, Yang Zou, Yonggang Lyu
{"title":"[Preparation and application of conductive fiber coated with liquid metal].","authors":"Chengfeng Liu, Jiabo Tang, Ming Li, Shihao Zhang, Yang Zou, Yonggang Lyu","doi":"10.7507/1001-5515.202507019","DOIUrl":"https://doi.org/10.7507/1001-5515.202507019","url":null,"abstract":"<p><p>Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m <sup>2</sup>·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"724-732"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice]. [40 Hz脉冲磁场对痴呆小鼠线粒体动力学和心率变异性的影响]。
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202501061
Lifan Zhang, Duyan Geng, Guizhi Xu, Hongxia An
{"title":"[Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice].","authors":"Lifan Zhang, Duyan Geng, Guizhi Xu, Hongxia An","doi":"10.7507/1001-5515.202501061","DOIUrl":"https://doi.org/10.7507/1001-5515.202501061","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group ( <i>P</i> < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved ( <i>P</i> < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"707-715"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research on prediction model of protein thermostability integrating graph embedding and network topology features]. 结合图嵌入和网络拓扑特征的蛋白质热稳定性预测模型研究
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202501045
Shuyi Pan, Xiaoyang Xiang, Qunfang Yan, Yanrui Ding
{"title":"[Research on prediction model of protein thermostability integrating graph embedding and network topology features].","authors":"Shuyi Pan, Xiaoyang Xiang, Qunfang Yan, Yanrui Ding","doi":"10.7507/1001-5515.202501045","DOIUrl":"https://doi.org/10.7507/1001-5515.202501045","url":null,"abstract":"<p><p>Protein structure determines function, and structural information is critical for predicting protein thermostability. This study proposes a novel method for protein thermostability prediction by integrating graph embedding features and network topological features. By constructing residue interaction networks (RINs) to characterize protein structures, we calculated network topological features and utilize deep neural networks (DNN) to mine inherent characteristics. Using DeepWalk and Node2vec algorithms, we obtained node embeddings and extracted graph embedding features through a TopN strategy combined with bidirectional long short-term memory (BiLSTM) networks. Additionally, we introduced the Doc2vec algorithm to replace the Word2vec module in graph embedding algorithms, generating graph embedding feature vector encodings. By employing an attention mechanism to fuse graph embedding features with network topological features, we constructed a high-precision prediction model, achieving 87.85% prediction accuracy on a bacterial protein dataset. Furthermore, we analyzed the differences in the contributions of network topological features in the model and the differences among various graph embedding methods, and found that the combination of DeepWalk features with Doc2vec and all topological features was crucial for the identification of thermostable proteins. This study provides a practical and effective new method for protein thermostability prediction, and at the same time offers theoretical guidance for exploring protein diversity, discovering new thermostable proteins, and the intelligent modification of mesophilic proteins.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"817-823"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Advances in molecular mechanisms and neuronal circuits underlying circadian rhythms in Drosophila]. [果蝇昼夜节律的分子机制和神经回路研究进展]。
生理学报 Pub Date : 2025-08-25 DOI: 10.13294/j.aps.2025.0066
Wu-Yan Xu, Chun-Xue Qiao, Fei-Xiang Li, Ding-Bang Ma
{"title":"[Advances in molecular mechanisms and neuronal circuits underlying circadian rhythms in <i>Drosophila</i>].","authors":"Wu-Yan Xu, Chun-Xue Qiao, Fei-Xiang Li, Ding-Bang Ma","doi":"10.13294/j.aps.2025.0066","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0066","url":null,"abstract":"<p><p>Circadian rhythms are core regulatory mechanisms that evolved to align biological functions with the Earth's rotation. These rhythms are conserved across organisms from unicellular life to multicellular species and play essential roles in metabolism, immune responses, and sleep-wake cycle. Circadian disruptions are strongly associated with various diseases. Over the past decades, genetic studies in <i>Drosophila</i> and mice have identified key conserved clock genes and uncovered transcription-translation feedback loops governing circadian regulation. Additionally, rhythmic neurons in the brain integrate complex neural circuits to precisely regulate physiological and behavioral rhythms. This review highlights recent advances in understanding the neuronal circuit mechanisms of rhythmic neurons in the <i>Drosophila</i> brain and discusses future directions for translating circadian rhythm research into chronomedicine and precision therapies.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 4","pages":"627-640"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Effects of elastic modulus of the metal block on the condylar-constrained knee prosthesis tibial fixation stability]. 金属块弹性模量对髁约束型膝关节假体胫骨固定稳定性的影响。
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202410039
Yuhan Zhang, Jing Zhang, Tianqi Dong, Xuan Zhang, Weijie Zhang, Lei Guo, Zhenxian Chen
{"title":"[Effects of elastic modulus of the metal block on the condylar-constrained knee prosthesis tibial fixation stability].","authors":"Yuhan Zhang, Jing Zhang, Tianqi Dong, Xuan Zhang, Weijie Zhang, Lei Guo, Zhenxian Chen","doi":"10.7507/1001-5515.202410039","DOIUrl":"https://doi.org/10.7507/1001-5515.202410039","url":null,"abstract":"<p><p>Although metal blocks have been widely used for reconstructing uncontained tibial bone defects, the influence of their elastic modulus on the stability of tibial prosthesis fixation remains unclear. Based on this, a finite element model incorporating constrained condylar knee (CCK) prosthesis, tibia, and metal block was established. Considering the influence of the post-restraint structure of the prosthesis, the effects of variations in the elastic modulus of the block on the von Mises stress distribution in the tibia and the block, as well as on the micromotion at the bone-prosthesis fixation interface, were investigated. Results demonstrated that collision between the insert post and femoral prosthesis during tibial internal rotation increased tibial von Mises stress, significantly influencing the prediction of block elastic modulus variation. A decrease in the elastic modulus of the metal block resulted in increased von Mises stress in the proximal tibia, significantly reduced von Mises stress in the distal tibia, decreased von Mises stress of the block, and increased micromotion at the bone-prosthesis fixation interface. When the elastic modulus of the metal block fell below that of bone cement, inadequate block support substantially increased the risk of stress shielding in the distal tibia and fixation interface loosening. Therefore, this study recommends that biomechanical investigations of CCK prostheses must consider the post-constraint effect, and the elastic modulus of metal blocks for bone reconstruction should not be lower than 3 600 MPa.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"782-789"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[A model based on the graph attention network for epileptic seizure anomaly detection]. 基于图注意网络的癫痫发作异常检测模型
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202411002
Guohua Liang, Jina E, Hanyi Li, Zhiwen Fang, Jun Wang, Chang'an Zhan, Feng Yang
{"title":"[A model based on the graph attention network for epileptic seizure anomaly detection].","authors":"Guohua Liang, Jina E, Hanyi Li, Zhiwen Fang, Jun Wang, Chang'an Zhan, Feng Yang","doi":"10.7507/1001-5515.202411002","DOIUrl":"https://doi.org/10.7507/1001-5515.202411002","url":null,"abstract":"<p><p>The existing epilepsy seizure detection algorithms have problems such as overfitting and poor generalization ability due to high reliance on manual labeling of electroencephalogram's data and data imbalance between seizure and interictal periods. An unsupervised learning detection method for epileptic seizure that jointed graph attention network (GAT) and Transformer framework (GAT-T) was proposed. In this method, channel correlations were adaptively learned by GAT encoder. Temporal information was captured by one-dimensional convolution decoder. Combining outputs of the two mentioned above, predicted values for electroencephalogram were generated. The collective anomaly score was calculated and the detection threshold was determined. The results demonstrated that GAT-T achieved the average performance exceeding 90% (or 99%) with a 0.25 s (or 2 s) time segment length, which could effectively detect epileptic seizures. Moreover, the channel association probability matrix was expected to assist clinicians in the initial screening of the epileptogenic zone, and ablation experiments also reflected the significance of each module in GAT-T. This study may assist clinicians in making more accurate diagnostic and therapeutic decisions for epilepsy patients.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"693-700"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Optimization and validation of a mathematical model for precise assessment of personalized exercise load based on wearable devices]. [基于可穿戴设备的个性化运动负荷精确评估数学模型的优化与验证]。
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202406043
Wenxing Wang, Yuanhui Zhao, Wenlang Yu, Hong Ren
{"title":"[Optimization and validation of a mathematical model for precise assessment of personalized exercise load based on wearable devices].","authors":"Wenxing Wang, Yuanhui Zhao, Wenlang Yu, Hong Ren","doi":"10.7507/1001-5515.202406043","DOIUrl":"https://doi.org/10.7507/1001-5515.202406043","url":null,"abstract":"<p><p>Exercise intervention is an important non-pharmacological intervention for various diseases, and establishing precise exercise load assessment techniques can improve the quality of exercise intervention and the efficiency of disease prevention and control. Based on data collection from wearable devices, this study conducts nonlinear optimization and empirical verification of the original \"Fitness-Fatigue Model\". By constructing a time-varying attenuation function and specific coefficients, this study develops an optimized mathematical model that reflects the nonlinear characteristics of training responses. Thirteen participants underwent 12 weeks of moderate-intensity continuous cycling, three times per week. For each training session, external load (actual work done) and internal load (heart rate variability index) data were collected for each individual to conduct a performance comparison between the optimized model and the original model. The results show that the optimized model demonstrates a significantly improved overall goodness of fit and superior predictive ability. In summary, the findings of this study can support dynamic adjustments to participants' training programs and aid in the prevention and control of chronic diseases.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"739-747"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases]. [联合经颅电刺激在脑病临床应用的研究进展]。
生物医学工程学杂志 Pub Date : 2025-08-25 DOI: 10.7507/1001-5515.202410055
Yujia Wei, Tingyu Wang, Chunfang Wang, Ying Zhang, Guizhi Xu
{"title":"[Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases].","authors":"Yujia Wei, Tingyu Wang, Chunfang Wang, Ying Zhang, Guizhi Xu","doi":"10.7507/1001-5515.202410055","DOIUrl":"https://doi.org/10.7507/1001-5515.202410055","url":null,"abstract":"<p><p>In recent years, the ongoing development of transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) has demonstrated significant potential in the treatment and rehabilitation of various brain diseases. In particular, the combined application of TES and TMS has shown considerable clinical value due to their potential synergistic effects. This paper first systematically reviews the mechanisms underlying TES and TMS, highlighting their respective advantages and limitations. Subsequently, the potential mechanisms of transcranial electromagnetic combined stimulation are explored, with a particular focus on three combined stimulation protocols: Repetitive TMS (rTMS) with transcranial direct current stimulation (tDCS), rTMS with transcranial alternating current stimulation (tACS), and theta burst TMS (TBS) with tACS, as well as their clinical applications in brain diseases. Finally, the paper analyzes the key challenges in transcranial electromagnetic combined stimulation research and outlines its future development directions. The aim of this paper is to provide a reference for the optimization and application of transcranial electromagnetic combined stimulation schemes in the treatment and rehabilitation of brain diseases.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"847-856"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144973113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信