生物医学工程学杂志Pub Date : 2025-06-25DOI: 10.7507/1001-5515.202407097
He Pan, Peng Ding, Fan Wang, Tianwen Li, Lei Zhao, Wenya Nan, Anmin Gong, Yunfa Fu
{"title":"[Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems].","authors":"He Pan, Peng Ding, Fan Wang, Tianwen Li, Lei Zhao, Wenya Nan, Anmin Gong, Yunfa Fu","doi":"10.7507/1001-5515.202407097","DOIUrl":"https://doi.org/10.7507/1001-5515.202407097","url":null,"abstract":"<p><p>The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"431-437"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生理学报Pub Date : 2025-06-25DOI: 10.13294/j.aps.2025.0044
Hai-Yuan Gao, Xiao-Ping Wang, Ming-Wang Zhou, Xing Yang, Bang-Jing He
{"title":"[Research progress on the effect of miRNA-mediated PPARγ-related signaling pathways on lipid metabolism in steroid-induced osteonecrosis of femoral head].","authors":"Hai-Yuan Gao, Xiao-Ping Wang, Ming-Wang Zhou, Xing Yang, Bang-Jing He","doi":"10.13294/j.aps.2025.0044","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0044","url":null,"abstract":"<p><p>Steroid-induced osteonecrosis of femoral head (SONFH) is a disease characterized by femoral head collapse and local pain caused by excessive use of glucocorticoids. Peroxisome proliferator-activated receptor-γ (PPARγ) is mainly expressed in adipose tissue. Wnt/β-catenin, AMPK and other related signaling pathways play an important role in regulating adipocyte differentiation, fatty acid uptake and storage. Bone marrow mesenchymal cells (BMSCs) have the ability to differentiate into adipocytes or osteoblasts, and the use of hormones upregulates PPARγ expression, resulting in BMSCs biased towards adipogenic differentiation. The increase of adipocytes affects the blood supply and metabolism of the femoral head, and the decrease of osteoblasts leads to the loss of trabecular bone, which eventually leads to partial or total ischemic necrosis and collapse of the femoral head. MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression by inhibiting the transcription or translation of target genes, thereby affecting cell function and disease progression. Studies have shown that miRNAs affect the progression of SONFH by regulating PPARγ lipid metabolism-related signaling pathways. Therefore, it may be an accurate and feasible SONFH treatment strategy to regulate adipogenic-osteoblast differentiation in BMSCs by targeted intervention of miRNA differential expression to improve lipid metabolism. In this paper, the miRNA-mediated PPARγ-related signaling pathways were classified and summarized to clarify their effects on lipid metabolism in SONFH, providing a theoretical reference for miRNA targeted therapy of SONFH, and then providing scientific evidence for SONFH precision medicine.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 3","pages":"493-503"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2025-06-25DOI: 10.7507/1001-5515.202412051
Yisen Zhu, Zhouyu Ji, Shuran Li, Haicheng Wang, Yunfa Fu, Hongtao Wang
{"title":"[A portable steady-state visual evoked potential brain-computer interface system for smart healthcare].","authors":"Yisen Zhu, Zhouyu Ji, Shuran Li, Haicheng Wang, Yunfa Fu, Hongtao Wang","doi":"10.7507/1001-5515.202412051","DOIUrl":"https://doi.org/10.7507/1001-5515.202412051","url":null,"abstract":"<p><p>This paper realized a portable brain-computer interface (BCI) system tailored for smart healthcare. Through the decoding of steady-state visual evoked potential (SSVEP), this system can rapidly and accurately identify the intentions of subjects, thereby meeting the practical demands of daily medical scenarios. Firstly, an SSVEP stimulation interface and an electroencephalogram (EEG) signal acquisition software were designed, which enable the system to execute multi-target and multi-task operations while also incorporating data visualization functionality. Secondly, the EEG signals recorded from the occipital region were decomposed into eight sub-frequency bands using filter bank canonical correlation analysis (FBCCA). Subsequently, the similarity between each sub-band signal and the reference signals was computed to achieve efficient SSVEP decoding. Finally, 15 subjects were recruited to participate in the online evaluation of the system. The experimental results indicated that in real-world scenarios, the system achieved an average accuracy of 85.19% in identifying the intentions of the subjects, and an information transfer rate (ITR) of 37.52 bit/min. This system was awarded third prize in the Visual BCI Innovation Application Development competition at the 2024 World Robot Contest, validating its effectiveness. In conclusion, this study has developed a portable, multifunctional SSVEP online decoding system, providing an effective approach for human-computer interaction in smart healthcare.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"455-463"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2025-06-25DOI: 10.7507/1001-5515.202407046
Juan Chen, Lizi Pan, Junyu Long, Nan Yang, Fei Liu, Yan Lu, Zhaolian Ouyang
{"title":"[Analysis of the global competitive landscape in artificial intelligence medical device research].","authors":"Juan Chen, Lizi Pan, Junyu Long, Nan Yang, Fei Liu, Yan Lu, Zhaolian Ouyang","doi":"10.7507/1001-5515.202407046","DOIUrl":"https://doi.org/10.7507/1001-5515.202407046","url":null,"abstract":"<p><p>The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with \"AI + imaging\" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"496-503"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生物医学工程学杂志Pub Date : 2025-06-25DOI: 10.7507/1001-5515.202407044
Ting Zhang, Juan Chen, Yan Lu, Dongzi Xu, Shu Yan, Zhaolian Ouyang
{"title":"[The analysis of invention patents in the field of artificial intelligent medical devices].","authors":"Ting Zhang, Juan Chen, Yan Lu, Dongzi Xu, Shu Yan, Zhaolian Ouyang","doi":"10.7507/1001-5515.202407044","DOIUrl":"https://doi.org/10.7507/1001-5515.202407044","url":null,"abstract":"<p><p>The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"504-511"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 5, Number 2, June 2025","authors":"","doi":"10.1002/msd2.70036","DOIUrl":"https://doi.org/10.1002/msd2.70036","url":null,"abstract":"<p><b>Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics:</b> Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144472761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Back Cover Image, Volume 5, Number 2, June 2025","authors":"","doi":"10.1002/msd2.70037","DOIUrl":"https://doi.org/10.1002/msd2.70037","url":null,"abstract":"<p><b>Back Cover Caption: Transfer learning in Physics-informed Neural Networks:</b> This study explores the generalization capabilities of physics-informed neural networks (PINNs) through transfer learning techniques applied to partial differential equation (PDE) problems. Traditional PINNs require retraining when problem conditions change, whereas this approach leverages full finetuning, lightweight finetuning, and low-rank adaptation (LoRA) to enhance efficiency across varying boundary conditions, materials, and geometries. Benchmark cases include the Taylor-Green Vortex, functionally graded elastic materials, and structural problems such as a square plate with a circular hole. The results demonstrate that full finetuning and LoRA significantly improve convergence and accuracy, highlighting their potential in developing more adaptable and efficient PINN-based solvers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144472945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Protective effect of aliskiren on renal injury in AGT-REN double transgenic hypertensive mice].","authors":"Xiao-Ling Yang, Yan-Yan Chen, Hua Zhao, Bo-Yang Zhang, Xiao-Fu Zhang, Xiao-Jie Li, Xiu-Hong Yang","doi":"10.13294/j.aps.2025.0046","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0046","url":null,"abstract":"<p><p>This study aims to investigate the effects of renin inhibitor aliskiren on kidney injury in human angiotensinogen-renin (AGT-REN) double transgenic hypertensive (dTH) mice and explore its possible mechanism. The dTH mice were divided into hypertension group (HT group) and aliskiren intervention group (HT+Aliskiren group), while wild-type C57BL/6 mice were served as the control group (WT group). Blood pressure data of mice in HT+Aliskiren group were collected after 28 d of subcutaneous penetration of aliskiren (20 mg/kg), and the damage of renal tissue structure and collagen deposition were observed by HE, Masson and PAS staining. The ultrastructure of kidney was observed by transmission electron microscope. Coomassie bright blue staining and biochemical analyzer were used to detect renal function injury. The expression of renin-angiotensin system (RAS) was determined by ELISA and immunohistochemistry. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in kidney were determined by chemiluminescence method. The content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47<sup>phox</sup>, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine (3-NT), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) were detected by Western blot analysis. The results showed that compared with WT group, the blood pressure of mice in HT group was significantly increased. The renal tissue structure in HT group showed glomerular sclerosis, severe interstitial tubular injury, and increased collagen deposition. In addition, 24 h urinary protein, serum creatinine and urea levels increased. Serum and renal tissue levels of angiotensin II (Ang II) were increased, serum angiotensin-(1-7) [Ang-(1-7)] expression was decreased, and renal Ang-(1-7) expression was elevated. The expressions of ACE, Ang II type 1 receptor (AT<sub>1</sub>R) and MasR in renal tissue were increased, while the expression of ACE2 was decreased. MDA content increased, SOD content decreased, and the expressions of p47<sup>phox</sup>, iNOS, 3-NT, NOX2 and NOX4 were increased. However, aliskiren reduced blood pressure in dTH mice, improved renal structure and renal function, reduced Ang II and Ang-(1-7) levels in serum and renal tissue, reduced the expression of ACE and AT<sub>1</sub>R in renal tissue, increased the expression of ACE2 and MasR in renal tissue, and decreased the above levels of oxidative stress indexes in dTH mice. These results suggest that aliskiren may play a protective role in hypertensive renal injury by regulating the balance between ACE-Ang II-AT<sub>1</sub>R and ACE2-Ang-(1-7)-MasR axes and inhibiting oxidative stress.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 3","pages":"408-418"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生理学报Pub Date : 2025-06-25DOI: 10.13294/j.aps.2025.0028
Lu-Xin Li, Ting-Ting Ji, Li Lu, Xiao-Ying Li, Li-Min Lu, Shou-Jun Bai
{"title":"[Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression].","authors":"Lu-Xin Li, Ting-Ting Ji, Li Lu, Xiao-Ying Li, Li-Min Lu, Shou-Jun Bai","doi":"10.13294/j.aps.2025.0028","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0028","url":null,"abstract":"<p><p>Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in <i>in vitro</i> studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and <i>in vitro</i> tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 3","pages":"385-394"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
生理学报Pub Date : 2025-06-25DOI: 10.13294/j.aps.2024.0078
Jia-Min Wang, Pan Liu, Rui Zhu, Dan Su
{"title":"[Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer].","authors":"Jia-Min Wang, Pan Liu, Rui Zhu, Dan Su","doi":"10.13294/j.aps.2024.0078","DOIUrl":"https://doi.org/10.13294/j.aps.2024.0078","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 3","pages":"563-572"},"PeriodicalIF":0.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}