Jianfei Shi, Pengfei Qi, Chuang Han, Chao Ye, Wuyin Jin
{"title":"Multi-State Meshing-Collision Dynamics Modeling and Analysis of High-Contact-Ratio Spur Gear System Considering Tooth Breakage","authors":"Jianfei Shi, Pengfei Qi, Chuang Han, Chao Ye, Wuyin Jin","doi":"10.1002/msd2.70000","DOIUrl":"https://doi.org/10.1002/msd2.70000","url":null,"abstract":"<p>Tooth breakage is a common issue in geared systems. The high-contact-ratio spur gear system (HCRSG) maintains continuous transmission despite tooth breakage, but experiences increased impact vibration. In aviation, even if the gear teeth break, the gear's transmission cannot be stopped immediately. Therefore, studying gear system dynamics with tooth breakage is crucial for assessing the reliability of mechanical equipment. This study treats the tooth-back contact induced by backlash as the tooth-back collision and presents the multi-state meshing-collision pattern of HCRSG with one tooth breakage (OTB), including triple-tooth, double-tooth, single-tooth meshes, disengagement, and tooth-back collision. Time-varying meshing stiffness and load distribution coefficients of HCRSG with OTB are calculated. Then a multi-state meshing-collision nonlinear dynamic model of HCRSG with OTB is established. The meshing forces of HCRSG with OTB and without OTB are calculated and compared to examine the effect of tooth breakage. The multi-state meshing-collision nonlinear dynamics of HCRSG with OTB are studied via bifurcation diagram, phase portraits, and Poincaré maps by changing the transmission error amplitude. The results show that 3-2-3-2-3 meshing pattern of HCRSG is shifted to 2-1-2-1-2 meshing pattern due to tooth breakage. The effect of tooth breakage on the meshing force and dynamic behavior significantly depends on teeth disengagement or tooth-back collision. Tooth breakage greatly affects the bifurcation and chaos characteristics of multistate meshing-collision behavior of HCRSG. This study creates a framework to predict and assess the dynamics of gear transmission systems with tooth breakage in extreme aviation and aerospace environments.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"160-175"},"PeriodicalIF":3.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hygrothermal Static Bending and Deflection Responses of Porous Multidirectional Nanofunctionally Graded Piezoelectric (NFGP) Plates With Variable Thickness on Elastic Foundations","authors":"Pawan Kumar, Suraj Prakash Harsha","doi":"10.1002/msd2.70003","DOIUrl":"https://doi.org/10.1002/msd2.70003","url":null,"abstract":"<p>This research article introduces a high-order finite element model based on the first-order shear deformation theory to analyze the hygrothermal static responses of nanoscale, multidirectional nanofunctionally graded piezoelectric (NFGP) plates resting on variable elastic foundations. The study considers the material properties of these plates, which are governed by three distinct material laws—Power, Exponential, and Sigmoid as well as various patterns of porosity distribution. The derived governing equations are formulated using Hamilton's principle and incorporate nonlocal piezoelasticity theory, employing a nine-node isoperimetric quadrilateral Lagrangian element capable of handling six degrees of freedom. A comprehensive parametric study is conducted, examining the influence of the small-scale parameter, material exponent for multidirectional grading, variable foundation stiffness, porosity-related exponent, thickness ratio, and the effects of hygrothermal and electrical loading on the NFGP plates, all while considering different boundary conditions. The findings provide valuable insights into the interaction between multidirectional graded smart structures and their foundations under varying hygrothermal and electromechanical conditions, which can significantly enhance the efficiency of designing and developing intelligent structures and systems.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"40-66"},"PeriodicalIF":3.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl
{"title":"Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys","authors":"David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl","doi":"10.1049/bsb2.70004","DOIUrl":"https://doi.org/10.1049/bsb2.70004","url":null,"abstract":"<p>Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Response Analysis and Active Vibration Control of the Smart Sandwich Composite Plate With FGM Core Layers and MIMO FGPM Actuators and Sensors","authors":"Kerim Gökhan Aktaş, İsmail Esen","doi":"10.1002/msd2.70001","DOIUrl":"https://doi.org/10.1002/msd2.70001","url":null,"abstract":"<p>This article deals with the dynamic response analysis and active vibration control of the smart functionally graded material (FGM) composite core plate with FG piezoelectric material (FGPM) surface actuators and sensors. Considering a power law distribution, the mechanical and electrical material characteristics of the FGM and FGPM layers change continually along the thickness plane. The finite element method (FEM) and the first-order shear deformation theory (FSDT) are utilized in the modeling process for the FGM and FGPM layers. In the dynamic analysis, the dynamic response of the sandwich structure under the impact of sinusoidally distributed step load and the corresponding sensor voltage is obtained. To ensure that the simulations are accurate, the findings are compared with previously published research. To analyze the control efficiency of FGPM sensors and actuators on the FGM host structure, the linear quadratic regulator (LQR) controller is utilized. The sandwich structure is considered a multiple-input multiple-output system (MIMO), so sensors and actuators are placed at different locations on the plate surface. The modal strain energy method is utilized to find the appropriate location of the FGPM layers. According to the results of the analysis, it has been determined that piezoelectric material coefficients as well as mechanical properties are extremely important for obtaining optimum control performance from FGPM sensors and actuators. In addition, it is emphasized that active vibration control of FGM plates can be performed effectively with the proper selection of sensors and actuators and their accurate distribution on the plate. These results are expected to contribute to micro-electro-mechanical system (MEMS) sensor and actuator applications, soft robotics applications, and vibration protection and vibration damping applications of nanostructures.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"3-19"},"PeriodicalIF":3.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haofei Xu, Yang Liu, Longxue Qiu, Antonio Lorenzo Masa Mbomio Mangue, Juntao Zhang, Benmei Wei, Lian Zhu, Chengzhi Xu, Evgeny A. Shirshin, Haibo Wang
{"title":"Preparation and application of collagen-based hemostatic materials: a review","authors":"Haofei Xu, Yang Liu, Longxue Qiu, Antonio Lorenzo Masa Mbomio Mangue, Juntao Zhang, Benmei Wei, Lian Zhu, Chengzhi Xu, Evgeny A. Shirshin, Haibo Wang","doi":"10.1186/s42825-025-00193-x","DOIUrl":"10.1186/s42825-025-00193-x","url":null,"abstract":"<div><p>Traumatic wounds are the prevalent scenarios encountered in battleground and emergency rooms. The rapid and effective hemostasis is imperative for life saving in these scenarios, for which the development of high-efficiency and biocompatible hemostatic materials is essential. Due to its excellent hemostatic property and biocompatibility, collagen has emerged as an ideal component of hemostatic materials. Furthermore, the properties of collagen-based hemostatic materials could be improved by the integration of other biomacromolecules, such as alginate, cellulose derivatives, and chitosan derivatives. Therefore, more and more novel hemostatic materials with exceptional hemostatic properties have been developed. This review aims to overview recent progress of collagen-based hemostatic materials. Firstly, the hemostatic mechanism of collagen was introduced. Secondly, various forms of collagen-based hemostatic materials, such as hydrogels, sponges, and powders, were highlighted. Thirdly, composite hemostatic materials of collagen and other biomacromolecules were overviewed. Finally, the outlook of collagen-based hemostatic materials was discussed.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00193-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Li , Xuanzi Guo , Xingxing Long , Jiangyan Wu , Weijia Zhang , Yanrong Zhu , Chunhui Xi , Yao Zhang
{"title":"Effects of antibiotics and heavy metals on ARGs in Danjiangkou Reservoir","authors":"Jing Li , Xuanzi Guo , Xingxing Long , Jiangyan Wu , Weijia Zhang , Yanrong Zhu , Chunhui Xi , Yao Zhang","doi":"10.1016/j.emcon.2024.100453","DOIUrl":"10.1016/j.emcon.2024.100453","url":null,"abstract":"<div><div>Antibiotic resistance genes (ARGs) have attracted more and more attention due to their potential exposure hazards. The Danjiangkou Reservoir (DJKR) is the source of water for the Middle Route Project under the South-to-North Water Transfer Scheme in China. To clarify the distribution of ARGs and their influencing factors in DJKR (including Danjiang Reservoir (DR) and Hanjiang River Reservoir (HR)), we used metagenomic analysis to investigate the ARGs. The results showed that the most abundant bacteria of both parts were Proteobacteteria. Antibiotic efflux (58.2 %) and alteration of antibiotic targets (69.4 %) were the main mechanisms in DR and HR. The composition of ARG species was similar in the two parts, but the number of ARG isoforms in HR was significantly higher than that in DR. ARG Intl1 was detected in both DR and HR. Network analysis showed a significant correlation between mobile genetic elements (MGEs) and ARGs. Heavy metals also showed a significant correlation with ARGs. Interestingly, the relationship between heavy metals and ARGs were more significant than that between antibiotics and ARGs.</div></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"11 2","pages":"Article 100453"},"PeriodicalIF":5.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fusion-Based Constitutive Model (FuCe): Toward Model-Data Augmentation in Constitutive Modeling","authors":"Tushar, Sawan Kumar, Souvik Chakraborty","doi":"10.1002/msd2.70005","DOIUrl":"https://doi.org/10.1002/msd2.70005","url":null,"abstract":"<p>Constitutive modeling is crucial for engineering design and simulations to accurately describe material behavior. However, traditional phenomenological models often struggle to capture the complexities of real materials under varying stress conditions due to their fixed forms and limited parameters. While recent advances in deep learning have addressed some limitations of classical models, purely data-driven methods tend to require large data sets, lack interpretability, and struggle to generalize beyond their training data. To tackle these issues, we introduce “Fusion-based Constitutive model (FuCe): Toward model-data augmentation in constitutive modeling.” This approach combines established phenomenological models with an Input Convex Neural Network architecture, designed to train on the limited and noisy force-displacement data typically available in practical applications. The hybrid model inherently adheres to necessary constitutive conditions. During inference, Monte Carlo dropout is employed to generate Bayesian predictions, providing mean values and confidence intervals that quantify uncertainty. We demonstrate the model's effectiveness by learning two isotropic constitutive models and one anisotropic model with a single fiber direction, across six different stress states. The framework's applicability is also showcased in finite element simulations across three geometries of varying complexities. Our results highlight the framework's superior extrapolation capabilities, even when trained on limited and noisy data, delivering accurate and physically meaningful predictions across all numerical examples.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"86-100"},"PeriodicalIF":3.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Application of the Novel Kolmogorov–Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures","authors":"Shan Lin, Kaiyang Zhao, Hongwei Guo, Quanke Hu, Xitailang Cao, Hong Zheng","doi":"10.1002/msd2.70004","DOIUrl":"https://doi.org/10.1002/msd2.70004","url":null,"abstract":"<p>The fundamental period is a crucial parameter in structural dynamics that informs the design, assessment, and monitoring of structures to ensure the safety and stability of buildings during earthquakes. Numerous machine-learning and deep-learning approaches have been proposed to predict the fundamental period of infill-reinforced concrete frame structures. However, challenges remain, including insufficient prediction accuracy and excessive computational resource demands. This study aims to provide a new paradigm for accurately and efficiently predicting fundamental periods, namely, Kolmogorov–Arnold networks (KANs) and their variants, especially radial basis function KANs (RBF-KANs). KANs are formulated based on the Kolmogorov–Arnold representation theorem, positioning them as a promising alternative to multilayer perceptron. In this research, we compare the performance of KANs against fully connected neural networks (FCNNs) in the context of fundamental period prediction. The mutual information method was employed for the analysis of dependencies between features in the FP4026 data set. Nine predictive models, including KANs, F-KANs, FCNN-2, FCNN-11, CatBoost, Support Vector Machine, and others, were constructed and compared, with hyperparameters determined by Optuna, which will highlight the optimal model amongst the F-KANs models. Numerical results manifest that the highest performance is yielded by the KANs with <i>R</i><sup>2</sup> = 0.9948, which offers an explicit form of the formula. Lastly, we further dive into the explainability and interpretability of the KANs, revealing that the number of stories and the opening percentage features have a significant effect on the fundamental period prediction results.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"67-85"},"PeriodicalIF":3.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Gómez-Zamanillo , Arantza Bereciartúa-Pérez , Artzai Picón , Liliana Parra , Marian Oldenbuerger , Ramón Navarra-Mestre , Christian Klukas , Till Eggers , Jone Echazarra
{"title":"Digitalizing greenhouse trials: An automated approach for efficient and objective assessment of plant damage using deep learning","authors":"Laura Gómez-Zamanillo , Arantza Bereciartúa-Pérez , Artzai Picón , Liliana Parra , Marian Oldenbuerger , Ramón Navarra-Mestre , Christian Klukas , Till Eggers , Jone Echazarra","doi":"10.1016/j.aiia.2025.03.001","DOIUrl":"10.1016/j.aiia.2025.03.001","url":null,"abstract":"<div><div>The use of image based and, recently, deep learning-based systems have provided good results in several applications. Greenhouse trials are key part in the process of developing and testing new herbicides and analyze the response of the species to different products and doses in a controlled way. The assessment of the damage in the plant is daily done in all trials by visual evaluation by experts. This entails time consuming process and lack of repeatability. Greenhouse trials require new digital tools to reduce time consuming process and to endow the experts with more objective and repetitive methods for establishing the damage in the plants.</div><div>To this end, a novel method is proposed composed by an initial segmentation of the plant species followed by a multibranch convolutional neural network to estimate the damage level. In this way, we overcome the need for costly and unaffordable pixelwise manual segmentation for damage symptoms and we make use of global damage estimation values provided by the experts.</div><div>The algorithm has been deployed under real greenhouse trials conditions in a pilot study located in BASF in Germany and tested over four species (GLXMA, TRZAW, ECHCG, AMARE). The results show mean average error (MAE) values ranging from 5.20 for AMARE and 8.07 for ECHCG for the estimation of PDCU value, with correlation values (R<sup>2</sup>) higher than 0.85 in all situations, and up to 0.92 in AMARE. These results surpass the inter-rater variability of human experts demonstrating that the proposed automated method is appropriate for automatically assessing greenhouse damage trials.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 280-295"},"PeriodicalIF":8.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Super-Element Differential-Quadrature Discrete-Time Transfer Matrix Method for Efficient Transient Analysis of Rotor Systems","authors":"Kai Xie, Xiaoting Rui, Bin He, Jinghong Wang","doi":"10.1002/msd2.70002","DOIUrl":"https://doi.org/10.1002/msd2.70002","url":null,"abstract":"<p>Efficient transient analysis is critical in rotor dynamics. This study proposes the super-element (SE) differential-quadrature discrete-time transfer matrix method (DQ-DT-TMM), a novel approach that eliminates the requirement for initial component accelerations and effectively handles beam and solid finite element (FE) models with high-dimensional degrees of freedom (DOFs) in rotor systems. The primary methodologies of this approach include: (1) For the beam substructure FE dynamic equation, the Craig–Bampton method is employed for the order reduction of internal coordinates, followed by the differential-quadrature method for temporal discretization. Using SE technology, the internal accelerations are condensed into the boundary accelerations, and the transfer equation and matrix for beam SEs are derived. (2) For the solid substructure FE dynamic equation formulated in the rotating reference frame, in addition to applying the procedures used for beam substructures, rigid multipoint constraints are introduced to condense the boundary coordinates for hybrid modeling with lumped parameter components. The transfer equation is subsequently formulated in the inertial reference frame, enabling the derivation of the transfer matrix for solid SEs. Comparative analysis with full-order FE models in commercial software demonstrates the advantages of the SE DQ-DT-TMM for linear rotor systems: (i) Accurately captures system dynamics using only a few primary modes. (ii) Achieves a 99.68% reduction in computational time for a beam model with 1120 elements and a 99.98% reduction for a solid model with 75 361 elements. (iii) Effectively recovers dynamic responses at any system node using recovery techniques. This research develops a computationally efficient framework for the transient analysis of large-scale rotor systems, effectively addressing the challenges associated with high-dimensional DOF models in conventional DT-TMMs.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"141-159"},"PeriodicalIF":3.4,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}