{"title":"Progress on the regulation of muscle regeneration by microRNA.","authors":"Tai-Zeng Zhou, Qiu-Yang Chen, Yi-Ting Yang, Mai-Lin Gan, Li Zhu, Lin-Yuan Shen","doi":"10.16288/j.yczz.24-252","DOIUrl":"https://doi.org/10.16288/j.yczz.24-252","url":null,"abstract":"<p><p>MicroRNA (miRNA) is a class of single-stranded non-coding short RNA molecules about the size of 22 nt. Currently, miRNA has received the most extensive research and attention, and miRNA has been shown to be involved in the post-transcriptional regulation of gene expression in almost all cellular events, including cell proliferation, migration, differentiation, and apoptosis. miRNA plays an important role in the process of muscle regeneration by targeting key factors at different stages of skeletal muscle regeneration. In this review, we summarize the role of miRNA in regulating muscle regeneration by affecting satellite cell quiescence, myoblast proliferation, and differentiation during muscle regeneration, and update the relationship between miRNA and PI3K/AKT, TGF-β/Smad signaling during muscle regeneration. The research progress of pathway interaction will help researchers to learn more about the knowledge of miRNA in muscle regeneration biology, and provide a better understanding of the involvement of non-coding RNAs in muscle regeneration.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 5","pages":"513-532"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144032053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suxin Li , Jinhui Gu , Biluan Zhong , Rui Feng , Hao Pan , Yiyi Liu , Wenzheng Shi
{"title":"Isolation and purification of antioxidant peptides from swim bladder of grass carp (Ctenopharyngodon idella)","authors":"Suxin Li , Jinhui Gu , Biluan Zhong , Rui Feng , Hao Pan , Yiyi Liu , Wenzheng Shi","doi":"10.1016/j.aaf.2023.12.009","DOIUrl":"10.1016/j.aaf.2023.12.009","url":null,"abstract":"<div><div>Swim bladder is a kind of material with rich nutritional value, wide access and a good source of collagen. In order to make it more fully utilized and absorbed by human body, using grass carp swim bladder as raw material and alkaline protease-neutral protease to prepare collagen peptide, the degree of hydrolysis can reach 36.91%. The results proved that after purification by ultrafiltration membrane and gel column chromatography, the antioxidant activity of GCP generally increased with the increase of concentration, and the smaller the molecular weight of GCP obtained after separation and purification, the stronger the overall antioxidant activity. Among them, the ABTS<sup>+</sup> scavenging rate of GCP with a certain molecular weight was 88.64%. Moreover, GCP also has good SOD scavenging ability and ferrous ion chelating ability. The total antioxidant activity of GCP-II purified by G15 gel column is great, for it exerts considerable antioxidant capacity at a lower concentration.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"10 3","pages":"Pages 485-493"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139824620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The difference of the composition and digestive enzymes of gut microbiome in herbivorous blunt snout bream (Megalobrama amblycephala) and carnivorous largemouth bass (Micropterus salmoides)","authors":"Lin Yu, Zihao Yuan, Xin Huang, Zexia Gao, Han Liu","doi":"10.1016/j.aaf.2024.01.002","DOIUrl":"10.1016/j.aaf.2024.01.002","url":null,"abstract":"<div><div>Blunt snout bream (<em>Megalobrama amblycephala</em>) and largemouth bass (<em>Micropterus salmoides</em>) are a herbivorous and a carnivorous freshwater fish species respectively. These fish possess distinct intestinal microorganisms and digestive enzymes that play a vital role in nutrient digestion. As a result, herbivorous and carnivorous fish exhibit significant differences in their digestive strategies. In this study, we investigated the compositions and functions of the gut flora of herbivorous <em>M. amblycephala</em> and carnivorous <em>M. salmoides</em> by 16S rRNA sequencing. PCoA analysis revealed that the gut flora of <em>M. amblycephala</em> and <em>M. salmoides</em> formed two distinct clusters. OTU analysis found that <em>M. amblycephala</em> and <em>M. salmoides</em> shared a small number, but high abundance, of core microorganisms, and that a large number of microorganisms differed at the phylum and genus levels between the two species. The cellulose-degrading bacteria <em>Longivirga</em>, <em>Flavobacterium</em>, <em>Clostridium_sensu_stricto_12</em>, and <em>Bacillus</em> were dominant in <em>M. amblycephala</em>, while protein-degrading bacteria <em>Clostridium_sensu_stricto_1</em>, <em>Lactococcus</em>, <em>Streptococcus</em> and <em>Proteiniclasticum</em> were dominant in <em>M. salmoides</em>. PICRUSt analysis showed significant differences in carbohydrate and protein metabolism functions as well. In addition, cellulase and amylase activities were significantly higher in <em>M. amblycephala</em> than in <em>M. salmoides</em>, while trypsin activity was significantly higher in <em>M. salmoides</em> than in <em>M. amblycephala</em>. These results indicated that dietary patterns influenced the composition and function of the bacterial community and the activity of digestive enzymes in the host’s gut.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"10 3","pages":"Pages 459-468"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
遗传Pub Date : 2025-04-01DOI: 10.16288/j.yczz.24-313
Ya-Jie Ji, Jie Xiong, Xian-Jin Qiu, Ke-Jian Wang
{"title":"Progress on plant parthenogenesis: promoting the application of synthetic apomixis.","authors":"Ya-Jie Ji, Jie Xiong, Xian-Jin Qiu, Ke-Jian Wang","doi":"10.16288/j.yczz.24-313","DOIUrl":"https://doi.org/10.16288/j.yczz.24-313","url":null,"abstract":"<p><p>Apomixis is a form of asexual reproduction in plants where embryos and clone seeds are formed directly without meiosis and fertilization. The progenies generated through apomixis are genetically identical to the maternal plants, and the genotypes does not change across generations, and the phenotypes do not undergo segregation. Successful introduction of apomixis into major crops and permanent, can achieve the permanent fixation of crop heterosis, will resulting in significant economic benefits. Parthenogenesis constitutes a pivotal component in artificial apomixis, facilitating the transition from sexual reproduction to unisexual reproduction. In this review, we summarize the recent studies on plant parthenogenesis genes, and provide an overview of the application in haploid breeding and apomixis system. This contributes to a deeper and comprehensive understanding of parthenogenesis, offering important references for its application in apomixis.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"448-455"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
遗传Pub Date : 2025-04-01DOI: 10.16288/j.yczz.24-239
Jing Luo, Kai-Ying Lei, Song Shi, Xiao-Li Xu, Xue-Liang Sun, Mei-Jun Song, Hong-Ping Zhang, Li Li
{"title":"The role of <i>cis</i>-regulatory elements in the determination and transformation of muscle fiber type in animal skeletal muscles.","authors":"Jing Luo, Kai-Ying Lei, Song Shi, Xiao-Li Xu, Xue-Liang Sun, Mei-Jun Song, Hong-Ping Zhang, Li Li","doi":"10.16288/j.yczz.24-239","DOIUrl":"https://doi.org/10.16288/j.yczz.24-239","url":null,"abstract":"<p><p>Muscle fibers are the fundamental units of skeletal muscle. Based on contraction speed and metabolic properties, muscle fibers are categorized into fast-twitch and slow-twitch fibers. Further subdivision based on MyHC gene isoforms identifies them as type I, IIA, IIB, and IIX fibers. There is potential for interconversion among these muscle fiber types. The proportions of different muscle fibers determine muscle functional properties and affect muscle quality. Compared with muscles mainly harboring fast-twitch fibers, muscles predominantly composed of slow-twitch fibers are characterized by enhanced water-holding capacity, tenderness, and superior flavor. During the formation and transformation of animal skeletal muscle fibers, the expression of a series of muscle-specific genes is precisely regulated by <i>cis</i>-regulatory elements. These <i>cis</i>-regulatory elements achieve precise regulation of the target genes through interactions with transcription factors and other regulatory proteins, thereby ensuring the formation and transformation of muscle fibers. Based on introducing the types and characteristics of muscle fibers, we summarize and prospect the role of the transcription factors and <i>cis</i>-regulatory elements in the formation and transformation of fast-twitch and slow-twitch muscle fibers in livestock. The aim of this review is to deepen the understanding of the relationship between gene expression regulation and muscle fiber diversity, and to provide theoretical support for the improvement of meat quality in livestock.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"437-447"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of PANoptosis-related lncRNAs in hepatocellular carcinoma based on bioinformatics and construction of a prognostic model.","authors":"Rui He, Xiu-Juan Zheng, Ning-Ning Wang, Xu-Ying Li, Ming-Qi Li, Shi-Jing Nian, Ke-Wei Wang","doi":"10.16288/j.yczz.24-208","DOIUrl":"https://doi.org/10.16288/j.yczz.24-208","url":null,"abstract":"<p><p>PANoptosis, a novel form of pro-inflammatory programmed cell death, plays a role in the progression of various cancers. However, its mechanisms in hepatocellular carcinoma (HCC) remain unclear. Recent studies have highlighted the critical role of long non-coding RNAs (lncRNAs) in the development and progression of multiple cancers. In this study, we retrieve HCC datasets from the TCGA and GEO databases. We identify PANoptosis-related lncRNAs through correlation analysis based on HCC datasets and previous research. Consistent clustering analysis reveals two distinct subtypes of HCC patients: Cluster 1 and Cluster 2. Compared with the Cluster 2 subtype, Cluster 1 shows a better prognosis and higher levels of immune infiltration. We then perform a Lasso-Cox regression analysis of PANoptosis-related lncRNAs to construct a risk assessment model for predicting the prognosis of HCC patients. Kaplan-Meier analysis indicates that patients in the low-risk group have higher survival rates, while ROC (receiver operating characteristic curve) and calibration curves demonstrate the model's good predictive performance. These findings provide deeper insights into the critical role of PANoptosis-related lncRNAs in developing HCC, offering potential biomarkers and therapeutic targets for future HCC treatment.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"456-475"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144032445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
遗传Pub Date : 2025-04-01DOI: 10.16288/j.yczz.24-341
Shu-Yang Gao, Hou-Guang Lu, Yan-Hua Wang, Dong Yan
{"title":"Screening of <i>Drosophila melanogaster</i> RNA m<sup>6</sup>A modification pathway factors.","authors":"Shu-Yang Gao, Hou-Guang Lu, Yan-Hua Wang, Dong Yan","doi":"10.16288/j.yczz.24-341","DOIUrl":"https://doi.org/10.16288/j.yczz.24-341","url":null,"abstract":"<p><p><i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A), one of the most prevalent mRNA modifications, plays crucial roles during animal and plant development and in various physiological and pathological processes. Previous studies have characterized m<sup>6</sup>A methyltransferase complexes, demethylases, and m<sup>6</sup>A-binding proteins, but as a relatively new epitranscriptomic pathway, it is likely that new m<sup>6</sup>A components remain to be discovered. To explore the effects of m<sup>6</sup>A modification on tissues and organs, the m<sup>6</sup>A reader <i>Ythdc1</i> was overexpressed in <i>Drosophila melanogaster</i> eye imaginal discs. Our results showed that overexpression of <i>Ythdc1</i> leads to ectopic expression of Sxl in males, the rough eye in both males and females, and the activation of JNK signaling and apoptotic pathway. In order to screen m<sup>6</sup>A modifiers using the rough eye phenotype, a stable <i>Drosophila</i> strain overexpressing <i>Ythdc1</i> was further constructed. By screening of more than 1,500 RNAi lines, several repressors and enhancers that may be involved in m<sup>6</sup>A modification were successfully identified. These genes are less studied in m<sup>6</sup>A pathway, and therefore we further verified them and conducted preliminary mechanistic analyses on them. In summary, this study identified multiple potential factors of the m<sup>6</sup>A modification pathway, expanded our understanding of the m<sup>6</sup>A modification network, and provided ideas and directions for exploring new regulatory mechanisms of this important pathway.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"476-488"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144022350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
遗传Pub Date : 2025-04-01DOI: 10.16288/j.yczz.24-292
Yan Guo, Da-Jin Zhang, Dong-Li Zhu, Shan-Shan Dong, Tie-Lin Yang
{"title":"Exploring the research hotspots and trends in genetic education reform.","authors":"Yan Guo, Da-Jin Zhang, Dong-Li Zhu, Shan-Shan Dong, Tie-Lin Yang","doi":"10.16288/j.yczz.24-292","DOIUrl":"https://doi.org/10.16288/j.yczz.24-292","url":null,"abstract":"<p><p>Genetics, as a core discipline of life sciences, has broad applications in medicine, agriculture, and environmental protection. With the rapid development in biotechnology, genetic education is facing new challenges and demands. Traditional teaching models have gradually revealed limitations in cultivating students' innovative abilities, practical skills, and comprehensive qualities. To enhance the quality and effectiveness of genetic education, promoting educational reform has become a focal point for educators and researchers. This study employs bibliometric methods to comprehensively review and analyze 690 relevant publications on genetic education reform from 1986 to 2023, encompassing both domestic and international contexts. The analysis covers multiple dimensions, including the time distribution of publications, research topics, major research institutions and authors, and keyword co-occurrence. Results indicate a steady annual growth in research on genetic education reform. Keyword analysis reveals prominent themes such as \"educational reform\", \"experimental education\" and \"medical genetics\", focusing on innovative teaching methods and improving educational outcomes. High-output institutions are primarily found in the fields of agriculture and life sciences, particularly within agricultural universities and the life sciences of comprehensive universities. Here, we summarize the current state and development trends in genetic education reform, providing a scientific basis and reference for future research. This study will promote the innovative development of genetic education and cultivate more high-quality talents with innovative spirit and practical abilities.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"399-408"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
遗传Pub Date : 2025-04-01DOI: 10.16288/j.yczz.24-211
Li-Na Zhu, Xu Wang, Xi-Han Guo
{"title":"Hematopoietic mosaic loss of Y chromosome: from population cohorts to pathogenic mechanisms.","authors":"Li-Na Zhu, Xu Wang, Xi-Han Guo","doi":"10.16288/j.yczz.24-211","DOIUrl":"https://doi.org/10.16288/j.yczz.24-211","url":null,"abstract":"<p><p>Mosaic loss of Y Chromosome (mLOY) refers to genetic mosaicism in males where some somatic cells have lost the Y chromosome (ChrY) while other cells remain their ChrY. mLOY is primarily found in the blood, not only because blood cells are easily accessible, but also because hematopoietic stem cells with LOY mutation gain competitive advantages, therefore producing a large number of LOY-positive blood cells via clonal hematopoiesis. Due to the specific structures, human ChrY is prone to be missegregated during mitosis, and driving by the germline variants, environmental insults and aging microenvironments, mLOY becomes the most commonly acquired age-related mutation in male genomes. Population-based cohort studies have shown that men with a certain degree of mLOY is associated with significantly reduced life expectancy and increased risks of cancer, Alzheimer's disease, cardiovascular diseases and among others. Recent studies using mouse models have further demonstrated that mLOY is a driving factor of leukemia and cardiovascular diseases. These findings suggest that mLOY not only provides a common genetic explanation for the occurrence of many chronic diseases in men, but also provides a new kernel for studying sex differences in human lifespan and disease risk. Here, we briefly summarize the findings from the population-based cohort studies on clonal hematopoiesis driven by LOY. Subsequently we sort out the risk factors of mLOY, methods for detecting mLOY and developing mLOY mouse models, and the potential mechanisms of mLOY in promoting a myriad of chronic diseases. Finally, we provide our own forward-looking perspectives for the future challenges and opportunities in mLOY. The findings from this review provide references for studying the biological role of Y chromosome and sex difference of chronic diseases.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"409-427"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144032056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}