Progress on nucleos(t)idyl lipid-based nanoparticles for nucleic acid drugs delivery.

Q3 Medicine
遗传 Pub Date : 2025-08-01 DOI:10.16288/j.yczz.24-378
Jia-Mei Hong, Hong-Yi Liu, Hua Guo, Jing Yu, Qi Zhang, Zhu Guan, Zhen-Jun Yang
{"title":"Progress on nucleos(t)idyl lipid-based nanoparticles for nucleic acid drugs delivery.","authors":"Jia-Mei Hong, Hong-Yi Liu, Hua Guo, Jing Yu, Qi Zhang, Zhu Guan, Zhen-Jun Yang","doi":"10.16288/j.yczz.24-378","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid drugs can function at the gene level, and have the advantages of simple synthesis, easy modification and high specificity. However, there are many obstacles in transfection and <i>in vivo</i> delivery due to their negative charge, high molecular weight, and hydrophilicity. Lipid nanoparticles (LNPs) can encapsulate siRNA or mRNA through electrostatic interactions and five related drugs have been approved as of April 2025. However, due to the inevitable immunogenicity and hepatosplenic toxicity, most LNP-encapsulated nucleic acid drugs were terminated in the early clinical stage. Nucleos(t)idyl lipids are a class of amphiphilic molecules composed of nucleobases or nucleos(t)idyl heads, linkers and lipid tail chains, which can bind with the bases of nucleic acid drugs through hydrogen bonding and π-π stacking and self-assemble to form nanoparticles or micelles with broad application prospects. In this review, we summarize the research progress in delivery systems of nucleic acid drugs based on nucleos(t)idyl lipids and peptidyl lipids, and discuss their differences with LNP-encapsulated nucleic acid drugs, including structural characterization, molecular dynamics simulation, <i>in vivo</i> distribution, as well as efficacy and safety, so as to provide new ideas for improving the targeting delivery of nucleic acid drugs.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 8","pages":"823-841"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleic acid drugs can function at the gene level, and have the advantages of simple synthesis, easy modification and high specificity. However, there are many obstacles in transfection and in vivo delivery due to their negative charge, high molecular weight, and hydrophilicity. Lipid nanoparticles (LNPs) can encapsulate siRNA or mRNA through electrostatic interactions and five related drugs have been approved as of April 2025. However, due to the inevitable immunogenicity and hepatosplenic toxicity, most LNP-encapsulated nucleic acid drugs were terminated in the early clinical stage. Nucleos(t)idyl lipids are a class of amphiphilic molecules composed of nucleobases or nucleos(t)idyl heads, linkers and lipid tail chains, which can bind with the bases of nucleic acid drugs through hydrogen bonding and π-π stacking and self-assemble to form nanoparticles or micelles with broad application prospects. In this review, we summarize the research progress in delivery systems of nucleic acid drugs based on nucleos(t)idyl lipids and peptidyl lipids, and discuss their differences with LNP-encapsulated nucleic acid drugs, including structural characterization, molecular dynamics simulation, in vivo distribution, as well as efficacy and safety, so as to provide new ideas for improving the targeting delivery of nucleic acid drugs.

核酰基脂基核酸药物递送纳米颗粒研究进展。
核酸药物可以在基因水平上起作用,具有合成简单、易修饰、特异性高的优点。然而,由于它们的负电荷、高分子量和亲水性,在转染和体内递送中存在许多障碍。脂质纳米颗粒(LNPs)可以通过静电相互作用封装siRNA或mRNA,截至2025年4月,已有五种相关药物获得批准。然而,由于不可避免的免疫原性和肝脾毒性,大多数lnp包封核酸药物在临床早期就被终止。核(t)酰基脂类是一类由核碱基或核(t)酰基头、连接体和脂质尾链组成的两亲性分子,可通过氢键和π-π堆积与核酸药物的碱基结合,自组装形成纳米颗粒或胶束,具有广阔的应用前景。本文综述了基于核酰基脂类和肽基脂类的核酸药物给药系统的研究进展,并从结构表征、分子动力学模拟、体内分布、疗效和安全性等方面讨论了它们与lnp包封核酸药物的差异,以期为提高核酸药物靶向给药提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信