{"title":"基于rnai的抗病毒免疫。","authors":"De-Yu Xu, Xi Zhou, Yu-Jie Ren","doi":"10.16288/j.yczz.25-077","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) is a gene silencing mechanism mediated by small RNAs derived from double-stranded RNA (dsRNA), capable of silencing specific genes. Following viral invasion, the dsRNA produced during viral replication is cleaved by the host cell's Dicer protein, generating virus-derived small interfering RNAs (virus-derived small interference RNAs, vsiRNA). These vsiRNAs then guide the cleavage and degradation of viral RNA <i>via</i> the RNAi pathway, exerting an antiviral effect. Therefore, RNAi is also recognized as an efficient antiviral immune pathway during viral infection. However, through long-term evolution, viruses have developed various strategies to counteract RNAi. For instance, they encode specific viral suppressors of RNAi (VSRs) that target and antagonize key molecules in this pathway. Research indicates that designing drugs to specifically target VSRs can \"unlock\" the antiviral function of RNAi within host cells, demonstrating highly potent and relatively broad-spectrum antiviral activity. Furthermore, viral infection can also be regulated by host- or virus-derived microRNAs (miRNAs). The role of miRNAs in viral infection provides new targets for antiviral therapy. In this review, we summarize the mechanism of RNAi in antiviral immunity, recent research advances, and its application prospects in antiviral therapy, aiming to provide theoretical support for antiviral immunity research and treatment.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 8","pages":"876-884"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNAi-based antiviral immunity.\",\"authors\":\"De-Yu Xu, Xi Zhou, Yu-Jie Ren\",\"doi\":\"10.16288/j.yczz.25-077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA interference (RNAi) is a gene silencing mechanism mediated by small RNAs derived from double-stranded RNA (dsRNA), capable of silencing specific genes. Following viral invasion, the dsRNA produced during viral replication is cleaved by the host cell's Dicer protein, generating virus-derived small interfering RNAs (virus-derived small interference RNAs, vsiRNA). These vsiRNAs then guide the cleavage and degradation of viral RNA <i>via</i> the RNAi pathway, exerting an antiviral effect. Therefore, RNAi is also recognized as an efficient antiviral immune pathway during viral infection. However, through long-term evolution, viruses have developed various strategies to counteract RNAi. For instance, they encode specific viral suppressors of RNAi (VSRs) that target and antagonize key molecules in this pathway. Research indicates that designing drugs to specifically target VSRs can \\\"unlock\\\" the antiviral function of RNAi within host cells, demonstrating highly potent and relatively broad-spectrum antiviral activity. Furthermore, viral infection can also be regulated by host- or virus-derived microRNAs (miRNAs). The role of miRNAs in viral infection provides new targets for antiviral therapy. In this review, we summarize the mechanism of RNAi in antiviral immunity, recent research advances, and its application prospects in antiviral therapy, aiming to provide theoretical support for antiviral immunity research and treatment.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"47 8\",\"pages\":\"876-884\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.25-077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.25-077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
RNA interference (RNAi) is a gene silencing mechanism mediated by small RNAs derived from double-stranded RNA (dsRNA), capable of silencing specific genes. Following viral invasion, the dsRNA produced during viral replication is cleaved by the host cell's Dicer protein, generating virus-derived small interfering RNAs (virus-derived small interference RNAs, vsiRNA). These vsiRNAs then guide the cleavage and degradation of viral RNA via the RNAi pathway, exerting an antiviral effect. Therefore, RNAi is also recognized as an efficient antiviral immune pathway during viral infection. However, through long-term evolution, viruses have developed various strategies to counteract RNAi. For instance, they encode specific viral suppressors of RNAi (VSRs) that target and antagonize key molecules in this pathway. Research indicates that designing drugs to specifically target VSRs can "unlock" the antiviral function of RNAi within host cells, demonstrating highly potent and relatively broad-spectrum antiviral activity. Furthermore, viral infection can also be regulated by host- or virus-derived microRNAs (miRNAs). The role of miRNAs in viral infection provides new targets for antiviral therapy. In this review, we summarize the mechanism of RNAi in antiviral immunity, recent research advances, and its application prospects in antiviral therapy, aiming to provide theoretical support for antiviral immunity research and treatment.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.