Pub Date : 2024-10-01DOI: 10.1088/2058-6272/ad5adb
Junxiao WANG, Yan ZHANG, Wanfei ZHANG, Yong GUO, Lei ZHANG, Zefu YE, Zhujun ZHU, Wangbao YIN, Suotang JIA
{"title":"Theoretical simulation study of laser-induced plasma bombardment on bacteria","authors":"Junxiao WANG, Yan ZHANG, Wanfei ZHANG, Yong GUO, Lei ZHANG, Zefu YE, Zhujun ZHU, Wangbao YIN, Suotang JIA","doi":"10.1088/2058-6272/ad5adb","DOIUrl":"https://doi.org/10.1088/2058-6272/ad5adb","url":null,"abstract":"With the rapid advancement of laser decontamination technology and growing awareness of microbial hazards, it becomes crucial to employ theoretical model to simulate and evaluate decontamination processes by laser-induced plasma. This study employs a two-dimensional axisymmetric fluid dynamics model to simulate the power density of plasma bombardment on bacteria and access its decontamination effects. The model considers the transport processes of vapor plasma and background gas molecules. Based on the destructive impact of high-speed moving particles in the plasma on bacteria, we investigate the bombardment power density under various conditions, including different laser spot sizes, wavelengths, plate’s tilt angles, and plate-target spacing. The results reveal that the bombardment power density increases with a decrease in laser spot size and wavelength. For instance, when the plate is parallel to the target surface with a 1 mm spacing, the bombardment power density triples as the laser spot size decreases from 0.8 mm to 0.5 mm and quadruples as the wavelength decreases from 1064 nm to 266 nm. Notably, when the plate is parallel to the target with a relatively close spacing of 0.5 mm, the bombardment power density at 0° inclination increases sevenfold compared to 45°. This simulation study is essential for optimizing optical parameters and designing component layouts in decontamination devices using laser-induced plasma. The reduction of laser spot size, wavelength, plate-target spacing and aligning the plate parallel to the target, collectively contribute to achieving precise and effective decontamination.","PeriodicalId":20227,"journal":{"name":"","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane","authors":"Zahra Taherian , Vahid Shahed Gharahshiran , Xiaoxuan Wei , Alireza Khataee , Yeojoon Yoon , Yasin Orooji","doi":"10.1016/j.nanoms.2023.10.005","DOIUrl":"10.1016/j.nanoms.2023.10.005","url":null,"abstract":"<div><div>CO<sub>2</sub> reformation of methane (CRM) and CO<sub>2</sub> methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes. While Ni-based catalysis suffers from poor stability due to coke formation or sintering, we report a super stable remedy. The active sites of mesoporous MgO were loaded using wet impregnation. The incorporation of Ni and promoters altered the physical features of the catalysts. Sm–Ni/MgO showed the smallest crystallite size, specific surface area, and pore volume. The Sm–Ni/MgO catalyst was selected as the most suitable candidate for CRM, with 82 % CH<sub>4</sub> and H<sub>2</sub>/CO ratio of approximately 100 % and also for CO<sub>2</sub> methanation with the conversion of carbon dioxide (82 %) and the selectivity toward methane reaches 100 % at temperatures above 300 <sup>ᵒ</sup>C. Furthermore, the Sm–Ni/MgO catalyst was stable for 900 min of continuous reaction, without significant carbon deposition. This stability was largely due to the high oxygen mobility on the catalyst surface in the presence of Sm. Overall, we demonstrated the efficacy of using promoted Ni catalysts supported by mesoporous magnesia for the improved reformation of greenhouse gases.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 5","pages":"Pages 536-547"},"PeriodicalIF":9.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajeela Awasthi , Srikanta Moharana , Vaneet Kumar , Nannan Wang , Elham Chmanehpour , Anupam Deep Sharma , Santosh K. Tiwari , Vijay Kumar , Yogendra Kumar Mishra
{"title":"Progress in doping and crystal deformation for polyanions cathode based lithium-ion batteries","authors":"Sajeela Awasthi , Srikanta Moharana , Vaneet Kumar , Nannan Wang , Elham Chmanehpour , Anupam Deep Sharma , Santosh K. Tiwari , Vijay Kumar , Yogendra Kumar Mishra","doi":"10.1016/j.nanoms.2024.01.004","DOIUrl":"10.1016/j.nanoms.2024.01.004","url":null,"abstract":"<div><div>Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithium-ion batteries (LIBs) due to their good stability, safety, cost-effectiveness, suitable voltages, and minimal environmental impact. However, these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity, which restricts their practical applicability. Recent developments, such as coating material particles with carbon or a conductive polymer, crystal deformation through the doping of foreign metal ions, and the production of nanostructured materials, have significantly enhanced the electrochemical performances of these materials. The successful applications of polyanion-based materials, especially in lithium-ion batteries, have been extensively reported. This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials, including phosphates, fluorophosphates, pyrophosphates, borates, silicates, sulfates, fluorosilicates, and oxalates. Therefore, this review provides detailed discussions on their synthesis strategies, electrochemical performance, and the doping of various ions.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 5","pages":"Pages 504-535"},"PeriodicalIF":9.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139892761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical incorporation of SiO2 into TiO2 layer by green plasma enhancer and quencher agents for synchronized improvements in the protective and bioactive properties","authors":"Mosab Kaseem , Ananda Repycha Safira , Mohammad Aadil , Han-Choel Choe","doi":"10.1016/j.nanoms.2024.01.003","DOIUrl":"10.1016/j.nanoms.2024.01.003","url":null,"abstract":"<div><div>This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO<sub>2</sub> into a TiO<sub>2</sub> layer, with the primary objective of simultaneously augmenting protective and bioactive attributes. This enhancement is realized through the synergistic utilization of Tetraethyl orthosilicate (TE) and Stevia (ST) within a plasma-assisted oxidation process. To achieve this goal, Ti–6Al–4V alloy underwent oxidation in an electrolyte solution containing acetate-glycerophosphate, with the addition of TE and ST separately and in combination. TE, as a silicon oxide (SiO<sub>2</sub>) precursor, facilitates the creation of a calcium-rich, rough, porous layer by undergoing hydrolysis to generate silanol groups (Si–OH), which subsequently condense into silicon-oxygen-silicon (Si–O–Si) bonds, resulting in SiO<sub>2</sub> formation. In contrast, ST acts as a plasma quencher, absorbing highly reactive plasma species during the oxidation process, reducing energy levels, and diminishing sparking intensity. The combination of TE and ST results in moderate sparking, balancing Stevia's quenching effect and TE's sparking influence. As a result, this coating exhibits enhanced corrosion resistance and bioactivity compared to using either ST or TE alone. The study highlights the potential of this synergistic approach for advanced TiO<sub>2</sub>-based coatings.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 5","pages":"Pages 596-610"},"PeriodicalIF":9.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1088/2058-6272/ad5a66
Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU
{"title":"An innovative approach to effective breeding blanket design for future fusion reactors","authors":"Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU","doi":"10.1088/2058-6272/ad5a66","DOIUrl":"https://doi.org/10.1088/2058-6272/ad5a66","url":null,"abstract":"An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors. The difficulty is to achieve tritium breeding ratio (TBR) target of 1.05 or more. This paper presents a new design approach to the blanket design process. It indicates that fusion blanket design is affected by universal functions based on iterations. Three aspects are worth more attention from fusion engineers in the future. The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation. The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion. The third factor is temperature field related to the tritium release. In particular, it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field. This approach is novel for blanket engineering in development of a fusion reactor.","PeriodicalId":20227,"journal":{"name":"","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Jia, Wenying Zhang, Tao Luo, Yongtao Li, Jianhong Shu, Julie Strand, Yuan Yue, Stig Purup, Jianxin Liu, Hengbo Shi
{"title":"Establishment of goat mammary organoid cultures modeling the mammary gland development and lactation.","authors":"Lei Jia, Wenying Zhang, Tao Luo, Yongtao Li, Jianhong Shu, Julie Strand, Yuan Yue, Stig Purup, Jianxin Liu, Hengbo Shi","doi":"10.1186/s40104-024-01084-7","DOIUrl":"10.1186/s40104-024-01084-7","url":null,"abstract":"<p><strong>Background: </strong>Although several cell culture systems have been developed to investigate the function of the mammary gland in dairy livestock, they have potential limitations, such as the loss of alveolar structure or genetic and phenotypic differences from their native counterparts. Overcoming these challenges is crucial for lactation research. Development of protocols to establish lactating organoid of livestock represents a promising goal for the future. In this study, we developed a protocol to establish a culture system for mammary organoids in dairy goats to model the mammary gland development and lactation process.</p><p><strong>Results: </strong>The organoids cultured within an extracellular matrix gel maintained a bilayer structure that closely resembled the native architecture of mammary tissue. The expansion of mammary organoids was significantly promoted by growth factors containing epidermal growth factor and fibroblast growth factor 2 whereas the proliferative index of the organoids was significantly inhibited by the treatment with WNT inhibitors. Upon stimulation with a lactogenic medium containing prolactin, the mammary organoids exhibited efficient lactation, characterized by the accumulation of lipid droplets in the lumen space. The lactation could be sustained for more than 3 weeks. Importantly, the expression patterns of genes related to fatty acid synthesis and milk proteins in lactating organoids closely mirrored those observed in mammary tissues. These observations were confirmed by data from proteomic analysis that the bulk of milk proteins was produced in the lactating organoids.</p><p><strong>Conclusion: </strong>This study is the first to establish a mammary organoid culture system modeling the mammary gland development and lactation process in ruminants. The efficient induction of lactation in ruminant mammary organoids holds promises for advancing the field of cell-based milk bio-manufacture in the food industry.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"124"},"PeriodicalIF":6.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification","authors":"Shuai XU, Wenzheng LIU, Jiaying QIN, Yiwei SUN, Xitao JIANG, Qi QI","doi":"10.1088/2058-6272/ad5ca0","DOIUrl":"https://doi.org/10.1088/2058-6272/ad5ca0","url":null,"abstract":"In this work, based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient, a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure. The air purification study is also carried out. Firstly, a contact electrode structure is constructed using a three-dimensional wire electrode. The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed, and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated. Secondly, the copper foam contact electrode structure is constructed using copper foam material, and the effects of different mesh sizes on the electric field distribution are analyzed. The results show that as the mesh size of the copper foam becomes larger, a strong electric field region exists not only on the surface of the insulating layer, but also on the surface of the vertical wires inside the copper foam, i.e., the strong electric field region shows a three-dimensional distribution. Besides, as the mesh size increases, the area of the vertical strong electric field also increases. However, the electric field strength on the surface of the insulating layer gradually decreases. Therefore, the appropriate mesh size can effectively increase the discharge area, which is conducive to improving the air purification efficiency. Finally, a highly permeable stacked electrode structure of multilayer wire-copper foam is designed. In combination with an ozone treatment catalyst, an air purification device is fabricated, and the air purification experiment is carried out.","PeriodicalId":20227,"journal":{"name":"","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baskar Thangaraj , Pravin Raj Solomon , Nutthapon Wongyao , Mohamed I. Helal , Ali Abdullah , Sufian Abedrabbo , Jamal Hassan
{"title":"Synthesis of reduced graphene oxide nanosheets from sugarcane dry leaves by two-stage pyrolysis for antibacterial activity","authors":"Baskar Thangaraj , Pravin Raj Solomon , Nutthapon Wongyao , Mohamed I. Helal , Ali Abdullah , Sufian Abedrabbo , Jamal Hassan","doi":"10.1016/j.nanoms.2024.01.006","DOIUrl":"10.1016/j.nanoms.2024.01.006","url":null,"abstract":"<div><div>Oxidative-exfoliation methods were in vogue in the production of rGO from graphite. Processing of such synthetic graphite needs high temperatures (≥2500 °C). Thus, such process is not cost-effective. The present study is made on the dry leaves of sugarcane (<em>Saccharum officinarum</em>) as an alternative raw material so as to be economical and environmentally benign. The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs. They were evaluated by UV–Vis., FTIR, XRD, Raman spectroscopy, TGA/DTG, BET, FESEM-EDS and TEM. The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface. The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands. Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups. Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 5","pages":"Pages 625-634"},"PeriodicalIF":9.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1088/2058-6272/ad68ae
Xianshu WU, Jingchun LI, Jiaqi DONG, Yuejiang SHI, Guoqing LIU, Yong LIU, Zhiqiang LONG, Buqing ZHANG, Baoshan YUAN (袁宝山), Y. K. Martin PENG, Minsheng LIU (刘敏胜)
{"title":"Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak","authors":"Xianshu WU, Jingchun LI, Jiaqi DONG, Yuejiang SHI, Guoqing LIU, Yong LIU, Zhiqiang LONG, Buqing ZHANG, Baoshan YUAN (袁宝山), Y. K. Martin PENG, Minsheng LIU (刘敏胜)","doi":"10.1088/2058-6272/ad68ae","DOIUrl":"https://doi.org/10.1088/2058-6272/ad68ae","url":null,"abstract":"Ion cyclotron resonance heating (ICRH) stands out as a widely utilized and cost-effective auxiliary method for plasma heating, bearing significant importance in achieving high-performance discharges in p-<sup>11</sup>B plasmas. In light of the specific context of p-<sup>11</sup>B plasma in the EHL-2 device, we conducted a comprehensive scan of the fundamental physical parameters of the antenna using the full-wave simulation program TORIC. Our preliminary result indicated that for p-<sup>11</sup>B plasma, optimal ion heating parameters include a frequency of 40 MHz, with a high toroidal mode number like <inline-formula>\u0000<tex-math><?CDATA ${N_phi } = 28$?></tex-math>\u0000<inline-graphic xlink:href=\"pst_26_10_104004_M1.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> to heat the majority H ions. In addition, we discussed the impact of concentration of minority ion species on ion cyclotron resonance heating when <sup>11</sup>B serves as the heavy minority species. The significant difference in charge-to-mass ratio between boron and hydrogen ions results in a considerable distance between the hybrid resonance layer and the tow inverted cyclotron resonance layer, necessitating a quite low boron ion concentration to achieve effective minority heating. We also considered another method of direct heating of hydrogen ions in the presence of boron ion minority. It is found that at appropriate boron ion concentrations (<inline-formula>\u0000<tex-math><?CDATA $ Xleft(^{11}mathrm{B}right)sim17% $?></tex-math>\u0000<inline-graphic xlink:href=\"pst_26_10_104004_M2.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>), the position of the hybrid resonance layer approaches that of the hydrogen ion cyclotron resonance layer, thereby altering the polarization at this position and significantly enhancing hydrogen ion fundamental absorption.","PeriodicalId":20227,"journal":{"name":"","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Aadil, Muhammad Ali Khan, Safira Ananda Repycha, Mosab Kaseem
{"title":"Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities","authors":"Mohammad Aadil, Muhammad Ali Khan, Safira Ananda Repycha, Mosab Kaseem","doi":"10.1016/j.nanoms.2023.12.003","DOIUrl":"10.1016/j.nanoms.2023.12.003","url":null,"abstract":"<div><div>The hybridization of metal-organic framework (MOF) with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response. In the present study, a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation (PEO) as a nucleation and growth site for Co-MOF. The concentrations of the organic linker 2-Methylimidazole (2,MIm) and cobalt nitrate as a source of Co<sup>2+</sup> ions were varied to control the growth of the obtained Co-MOF. Lower concentrations of the 2, MIm ligand favored the formation of leaf-like MOF structures through an anisotropic, two-dimensional growth, while higher concentrations led to rapid, isotropic nucleation and the creation of polyhedral Co-MOF structures. The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability, with the lowest corrosion current density (3.11 × 10<sup>−9</sup> A/cm<sup>2</sup>) and the highest top layer resistance (2.34 × 10<sup>6</sup> Ω cm<sup>2</sup>), and demonstrated outstanding photocatalytic efficiency, achieving a remarkable 99.98 % degradation of methylene blue, an organic pollutant, in model wastewater. To assess the active adsorption sites of the Co-MOF, density functional theory (DFT) was utilized. This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate, which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 5","pages":"Pages 548-564"},"PeriodicalIF":9.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}