介电mu-近零超材料中的长程量子纠缠

IF 23.4 Q1 OPTICS
Olivia Mello, Larissa Vertchenko, Seth Nelson, Adrien Debacq, Durdu Guney, Eric Mazur, Michaël Lobet
{"title":"介电mu-近零超材料中的长程量子纠缠","authors":"Olivia Mello, Larissa Vertchenko, Seth Nelson, Adrien Debacq, Durdu Guney, Eric Mazur, Michaël Lobet","doi":"10.1038/s41377-025-01994-9","DOIUrl":null,"url":null,"abstract":"<p>Entanglement is paramount in quantum information processing. Many quantum systems suffer from spatial decoherence in distances over a wavelength and cannot be sustained over short time periods due to dissipation. However, long range solutions are required for the development of quantum information processing on chip. Photonic reservoirs mediating the interactions between qubits and their environment are suggested. Recent research takes advantage of extended wavelength inside near-zero refractive index media to solve the long-range problem along with less sensitivity on the position of quantum emitters. However, those recent proposals use plasmonic epsilon near-zero waveguides that are intrinsically lossy. Here, we propose a fully dielectric platform, compatible with the Nitrogen Vacancy (NV) diamond centers on-chip technology, to drastically improve the range of entanglement over 17 free-space wavelengths, or approximatively 12.5 µm, using mu near-zero metamaterials. We evaluate transient and steady state concurrence demonstrating an order of magnitude enhancement compared to previous works. This is, to the best of our knowledge, the first time that such a long distance is reported using this strategy. Moreover, value of the zero time delay second order correlation function <span>\\({g}_{12}^{(2)}(0)\\)</span> are provided, showing antibunching signature correlated with a high degree of concurrence.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"71 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range quantum entanglement in dielectric mu-near-zero metamaterials\",\"authors\":\"Olivia Mello, Larissa Vertchenko, Seth Nelson, Adrien Debacq, Durdu Guney, Eric Mazur, Michaël Lobet\",\"doi\":\"10.1038/s41377-025-01994-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entanglement is paramount in quantum information processing. Many quantum systems suffer from spatial decoherence in distances over a wavelength and cannot be sustained over short time periods due to dissipation. However, long range solutions are required for the development of quantum information processing on chip. Photonic reservoirs mediating the interactions between qubits and their environment are suggested. Recent research takes advantage of extended wavelength inside near-zero refractive index media to solve the long-range problem along with less sensitivity on the position of quantum emitters. However, those recent proposals use plasmonic epsilon near-zero waveguides that are intrinsically lossy. Here, we propose a fully dielectric platform, compatible with the Nitrogen Vacancy (NV) diamond centers on-chip technology, to drastically improve the range of entanglement over 17 free-space wavelengths, or approximatively 12.5 µm, using mu near-zero metamaterials. We evaluate transient and steady state concurrence demonstrating an order of magnitude enhancement compared to previous works. This is, to the best of our knowledge, the first time that such a long distance is reported using this strategy. Moreover, value of the zero time delay second order correlation function <span>\\\\({g}_{12}^{(2)}(0)\\\\)</span> are provided, showing antibunching signature correlated with a high degree of concurrence.</p><figure></figure>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01994-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01994-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

纠缠在量子信息处理中是至关重要的。许多量子系统在一个波长的距离上存在空间退相干,并且由于耗散而不能在短时间内持续。然而,芯片上量子信息处理的发展需要长期的解决方案。提出了介导量子比特与其环境相互作用的光子储层。近年来的研究利用近零折射率介质内波长的延长来解决量子发射体位置灵敏度较低的长程问题。然而,这些最近的建议使用等离子体接近零的波导,本质上是有损耗的。在这里,我们提出了一个完全介电平台,与氮空位(NV)金刚石中心芯片技术兼容,使用mu近零超材料大幅提高了17个自由空间波长(约12.5 μ m)的纠缠范围。我们评估了瞬态和稳态并发,与以前的工作相比,显示了一个数量级的增强。据我们所知,这是第一次使用这种策略报道如此长的距离。并给出了零时延二阶相关函数\({g}_{12}^{(2)}(0)\)的值,显示了高并发度相关的反聚束签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-range quantum entanglement in dielectric mu-near-zero metamaterials

Long-range quantum entanglement in dielectric mu-near-zero metamaterials

Entanglement is paramount in quantum information processing. Many quantum systems suffer from spatial decoherence in distances over a wavelength and cannot be sustained over short time periods due to dissipation. However, long range solutions are required for the development of quantum information processing on chip. Photonic reservoirs mediating the interactions between qubits and their environment are suggested. Recent research takes advantage of extended wavelength inside near-zero refractive index media to solve the long-range problem along with less sensitivity on the position of quantum emitters. However, those recent proposals use plasmonic epsilon near-zero waveguides that are intrinsically lossy. Here, we propose a fully dielectric platform, compatible with the Nitrogen Vacancy (NV) diamond centers on-chip technology, to drastically improve the range of entanglement over 17 free-space wavelengths, or approximatively 12.5 µm, using mu near-zero metamaterials. We evaluate transient and steady state concurrence demonstrating an order of magnitude enhancement compared to previous works. This is, to the best of our knowledge, the first time that such a long distance is reported using this strategy. Moreover, value of the zero time delay second order correlation function \({g}_{12}^{(2)}(0)\) are provided, showing antibunching signature correlated with a high degree of concurrence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信