{"title":"Robust mode-locking in all-fiber ultrafast laser by nanocavity of two-dimensional heterostructure","authors":"Jiahui Shao, Guangjie Yao, Xuecheng Wu, Kaifeng Lin, Shaoyi Zhang, Xu Cheng, Ding Zhong, Chang Liu, Can Liu, Fengqiu Wang, Kaihui Liu, Hao Hong","doi":"10.1038/s41377-025-02018-2","DOIUrl":null,"url":null,"abstract":"<p>The fiber-based saturable absorber (SA) that enables mode-locking within a ring cavity serves as the core component of the ultrafast all-fiber lasers. However, the integration of SAs onto fibers with high compactness suffers from imbalanced saturable absorption properties and unstable mode-locking performance. Here, we present a robust mode-locking SA by integrating a nanocavity composed of a two-dimensional graphene heterostructure on the fiber end facet. We demonstrate a significant reduction in the saturation intensity (~65%) and improved soliton dynamic processes through precise modulation of the optical field within the heterostructure. The designed heterostructure facilitates the formation of a stable single-soliton state for robust mode-locking. A high tolerance to intracavity polarization variations is achieved in the heterostructure-SA (~85% compared to 20% for bare graphene). Our designed heterostructure-SA represents an important advancement in the development of ultracompact mode-locked all-fiber lasers, offering enhanced integrability and stability.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"15 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02018-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The fiber-based saturable absorber (SA) that enables mode-locking within a ring cavity serves as the core component of the ultrafast all-fiber lasers. However, the integration of SAs onto fibers with high compactness suffers from imbalanced saturable absorption properties and unstable mode-locking performance. Here, we present a robust mode-locking SA by integrating a nanocavity composed of a two-dimensional graphene heterostructure on the fiber end facet. We demonstrate a significant reduction in the saturation intensity (~65%) and improved soliton dynamic processes through precise modulation of the optical field within the heterostructure. The designed heterostructure facilitates the formation of a stable single-soliton state for robust mode-locking. A high tolerance to intracavity polarization variations is achieved in the heterostructure-SA (~85% compared to 20% for bare graphene). Our designed heterostructure-SA represents an important advancement in the development of ultracompact mode-locked all-fiber lasers, offering enhanced integrability and stability.