Photonics and microwaves merge to improve computing flexibility

IF 23.4 Q1 OPTICS
Hongwei Wang, Guangwei Hu
{"title":"Photonics and microwaves merge to improve computing flexibility","authors":"Hongwei Wang, Guangwei Hu","doi":"10.1038/s41377-025-01933-8","DOIUrl":null,"url":null,"abstract":"<p>In artificial neural networks, data structures usually exist in the form of vectors, matrices, or higher-dimensional tensors. However, traditional electronic computing architectures are limited by the bottleneck of separation of storage and computing, making it difficult to efficiently handle large-scale tensor operations. The research team has developed a photonic tensor processing unit based on a single microring resonator, which performs tensor convolution operations in multiple dimensions of time, wavelength, and microwave frequency by precisely adjusting the operating state of multi-wavelength lasers. This innovative design increases the photonic computing density to 34.04 TOPS/mm², significantly surpassing the performance level of existing photonic computing chips.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"15 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01933-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In artificial neural networks, data structures usually exist in the form of vectors, matrices, or higher-dimensional tensors. However, traditional electronic computing architectures are limited by the bottleneck of separation of storage and computing, making it difficult to efficiently handle large-scale tensor operations. The research team has developed a photonic tensor processing unit based on a single microring resonator, which performs tensor convolution operations in multiple dimensions of time, wavelength, and microwave frequency by precisely adjusting the operating state of multi-wavelength lasers. This innovative design increases the photonic computing density to 34.04 TOPS/mm², significantly surpassing the performance level of existing photonic computing chips.

Abstract Image

光子学和微波的结合提高了计算的灵活性
在人工神经网络中,数据结构通常以向量、矩阵或高维张量的形式存在。然而,传统的电子计算体系结构受到存储与计算分离的瓶颈限制,难以有效地处理大规模张量运算。研究小组开发了一种基于单个微环谐振腔的光子张量处理单元,通过精确调节多波长激光器的工作状态,在时间、波长和微波频率的多个维度上进行张量卷积运算。这一创新设计将光子计算密度提高到34.04 TOPS/mm²,大大超过了现有光子计算芯片的性能水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信