生命科学最新文献

筛选
英文 中文
Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. 全基因组关联研究发现 FtPMEI13 基因赋予鞑靼荞麦抗旱性。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/tpj.17119
Jiayue He, Yanrong Hao, Yuqi He, Wei Li, Yaliang Shi, Muhammad Khurshid, Dili Lai, Chongzhong Ma, Xiangru Wang, Jinbo Li, Jianping Cheng, Alisdair R Fernie, Jingjun Ruan, Kaixuan Zhang, Meiliang Zhou
{"title":"Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat.","authors":"Jiayue He, Yanrong Hao, Yuqi He, Wei Li, Yaliang Shi, Muhammad Khurshid, Dili Lai, Chongzhong Ma, Xiangru Wang, Jinbo Li, Jianping Cheng, Alisdair R Fernie, Jingjun Ruan, Kaixuan Zhang, Meiliang Zhou","doi":"10.1111/tpj.17119","DOIUrl":"https://doi.org/10.1111/tpj.17119","url":null,"abstract":"<p><p>Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crucial Roles of Brassinosteroids in Cell Wall Composition and Structure Across Species: New Insights and Biotechnological Applications. 芸苔素甾类化合物在不同物种细胞壁组成和结构中的关键作用:新见解和生物技术应用。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/pce.15258
Francisco Percio, Lourdes Rubio, Vitor Amorim-Silva, Miguel A Botella
{"title":"Crucial Roles of Brassinosteroids in Cell Wall Composition and Structure Across Species: New Insights and Biotechnological Applications.","authors":"Francisco Percio, Lourdes Rubio, Vitor Amorim-Silva, Miguel A Botella","doi":"10.1111/pce.15258","DOIUrl":"https://doi.org/10.1111/pce.15258","url":null,"abstract":"<p><p>Brassinosteroids (BR) are steroidal phytohormones essential for plant growth, development, and stress resistance. They fulfil this role partially by modulating cell wall structure and composition through the control of gene expression involved in primary and secondary cell wall biosynthesis and metabolism. This affects the deposition of cellulose, lignin, and other components, and modifies the inner architecture of the wall, allowing it to adapt to the developmental status and environmental conditions. This review focuses on the effects that BR exerts on the main components of the cell wall, cellulose, hemicellulose, pectin and lignin, in multiple and relevant plant species. We summarize the outcomes that result from modifying cell wall components by altering BR gene expression, applying exogenous BR and utilizing natural variability in BR content and describing new roles of BR in cell wall structure. Additionally, we discuss the potential use of BR to address pressing needs, such as increasing crop yield and quality, enhancing stress resistance and improving wood production through cell wall modulation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa. 根果胶的去甲基酯化修饰介导了乳齿植物的镉积累。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/pce.15240
Qian-Hui Zhang, Xuan-Tong Tan, Zhen-Bang Li, Yi-Qi Chen, Zhong-Yi Yang, Guo-Rong Xin, Chun-Tao He
{"title":"De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa.","authors":"Qian-Hui Zhang, Xuan-Tong Tan, Zhen-Bang Li, Yi-Qi Chen, Zhong-Yi Yang, Guo-Rong Xin, Chun-Tao He","doi":"10.1111/pce.15240","DOIUrl":"https://doi.org/10.1111/pce.15240","url":null,"abstract":"<p><p>Cadmium (Cd) contamination in agricultural soil brings severe health risks through the dietary intake of Cd-polluted crops. The comprehensive role of pectin in lowering Cd accumulation is investigated through low Cd accumulated (L) and high Cd accumulated (H) cultivars of L. sativa. The significantly different Cd contents in the edible parts of two L. sativa cultivars are accomplished by different Cd transportations. The pectin is the dominant responsive cell wall component according to significantly increased uronic acid contents and the differential Cd absorption between unmodified and modified cell wall. The chemical structure characterization revealed the decreased methyl esterification in pectin under Cd treatment compared with control. Significantly brighter LM19 relative fluorescence density and 40.82% decreased methanol in the root pectin of L cultivar under Cd treatment (p < 0.05) supported that the de-methyl esterification of root pectin is more significant in L cultivar than in H cultivar. The pectin de-methyl esterification of L cultivar is achieved by the upregulation of pectin esterases and the downregulation of pectin esterase inhibitors under Cd treatments, which has facilitated the higher Cd-binding of pectin. Our findings provide deep insight into the differential Cd accumulation of L. sativa cultivars and contribute to the understanding the pollutant behaviors in plants.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes. H3K27me1 沉积的昼夜控制影响着细胞周期和 DNA 损伤反应基因子集的表达。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-01 DOI: 10.1111/tpj.17114
Jorge Fung-Uceda, María Sol Gómez, Laura Rodríguez-Casillas, Anna González-Gil, Crisanto Gutierrez
{"title":"Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes.","authors":"Jorge Fung-Uceda, María Sol Gómez, Laura Rodríguez-Casillas, Anna González-Gil, Crisanto Gutierrez","doi":"10.1111/tpj.17114","DOIUrl":"https://doi.org/10.1111/tpj.17114","url":null,"abstract":"<p><p>Rhythmic oscillation of biological processes helps organisms adapt their physiological responses to the most appropriate time of the day. Chromatin remodeling has been described as one of the molecular mechanisms controlling these oscillations. The importance of these changes in transcriptional activation as well as in the maintenance of heterochromatic regions has been widely demonstrated. However, little is still known on how diurnal changes can impact the global status of chromatin modifications and, hence, control gene expression. In plants, the repressive mark H3K27me1, deposited by ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 and 6 (ATXR5 and 6) methyltransferases, is largely associated with transposable elements but also covers lowly expressed genes. Here we show that this histone modification is preferentially deposited during the night. In euchromatic regions, it is found along the bodies of DNA damage response genes (DDR), where it is needed for their proper expression. The absence of H3K27me1 translates into an enhanced expression of DDR genes that follows a rhythmic oscillation pattern. This evidences a link between chromatin modifications and their synchronization with the diurnal cycle in order to accurately modulate the activation of biological processes to the most appropriate time of the day.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lost in domestication: Has modern wheat left its microbial allies behind? 在驯化中迷失:现代小麦抛弃了微生物盟友吗?
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-11-01 DOI: 10.1111/tpj.17137
Martin Balcerowicz
{"title":"Lost in domestication: Has modern wheat left its microbial allies behind?","authors":"Martin Balcerowicz","doi":"10.1111/tpj.17137","DOIUrl":"https://doi.org/10.1111/tpj.17137","url":null,"abstract":"","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 4","pages":"1261-1262"},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study 揭示糖酵解调节蛋白EhPpdk与无丝分裂期促进复合蛋白EhApc10之间的相互作用:酵母双杂交筛选、体外结合试验和分子模拟研究。
IF 1.9 1区 化学
Accounts of Chemical Research Pub Date : 2024-11-01 DOI: 10.1007/s10930-024-10238-5
Suchetana Pal, Pinaki Biswas, Raktim Ghosh, Somasri Dam
{"title":"Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study","authors":"Suchetana Pal,&nbsp;Pinaki Biswas,&nbsp;Raktim Ghosh,&nbsp;Somasri Dam","doi":"10.1007/s10930-024-10238-5","DOIUrl":"10.1007/s10930-024-10238-5","url":null,"abstract":"<div><p>The anaphase promoting complex (APC or cyclosome) is a major ubiquitin ligase that coordinates mitotic and G1 progression, acting as a major regulator of chromosome segregation. While the human APC contains fourteen subunits, it is yet to be explored in the pathogen <i>Entamoeba histolytica</i>. Our study reveals the existence of a single functional Apc10 homolog in <i>E</i>. <i>histolytica</i>, which acts as a processivity factor of ubiquitin ligase activity in human. A cDNA library generated from HM1:IMSS strain of <i>E</i>. <i>histolytica</i> was screened for interaction partners of EhApc10 in yeast two hybrid study. The novel interactor, a glycolytic enzyme, pyruvate phosphate dikinase (Ppdk) was found to interact with EhApc10 and further validated by in vitro assay. A comprehensive in silico study has emphasized the structural and functional aspects, encompassing physicochemical traits, predictive 3D structure modelling, validation of EhApc10-EhPpdk interaction through molecular docking and simulation. The interplay between a cell cycle protein and a glycolytic enzyme highlights the connection between cellular metabolism and the cell cycle regulatory mechanism. The study serves as the groundwork for future research on the non-mitotic role of APC beyond cell cycle.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"43 6","pages":"1104 - 1119"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylem and Phloem in Petioles Are Coordinated With Leaf Gas Exchange in Oaks With Contrasting Anatomical Strategies Depending on Leaf Habit. 橡树叶柄中的木质部和叶肉与叶片的气体交换相互协调,其解剖学策略因叶片习性而异。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-01 DOI: 10.1111/pce.15231
Rubén Martín-Sánchez, Domingo Sancho-Knapik, Juan Pedro Ferrio, David Alonso-Forn, Juan Manuel Losada, José Javier Peguero-Pina, Maurizio Mencuccini, Eustaquio Gil-Pelegrín
{"title":"Xylem and Phloem in Petioles Are Coordinated With Leaf Gas Exchange in Oaks With Contrasting Anatomical Strategies Depending on Leaf Habit.","authors":"Rubén Martín-Sánchez, Domingo Sancho-Knapik, Juan Pedro Ferrio, David Alonso-Forn, Juan Manuel Losada, José Javier Peguero-Pina, Maurizio Mencuccini, Eustaquio Gil-Pelegrín","doi":"10.1111/pce.15231","DOIUrl":"https://doi.org/10.1111/pce.15231","url":null,"abstract":"<p><p>As the single link between leaves and the rest of the plant, petioles must develop conductive tissues according to the water influx and sugar outflow of the leaf lamina. A scaling relationship between leaf area and anatomical traits of xylem and phloem is expected to improve the efficiency of these tissues. However, the different constraints compromising the functionality of both tissues (e.g., risk of cavitation) must not be disregarded. Additionally, deciduous and evergreen plants may have different strategies to produce and package their petiole conduits to cope with environmental restrictions. We explored in 33 oak species the relationships between petiole anatomical traits, leaf area, stomatal conductance, and photosynthesis rate. Results showed allometric scaling between anatomical structure of xylem and phloem with leaf area. We also found correlations between photosynthesis rate, stomatal conductance, and anatomical traits in the petiole. The main novelty is how oaks present a different strategy depending on the leaf habit. Deciduous species tend to increase their diameters to achieve greater leaf-specific conductivity. By contrast, evergreen oaks develop larger xylem conductive areas for a given leaf area than deciduous ones. This trade-off between safety-efficiency in petioles has never been attributed to the leaf habit of the species.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications 揭示种子蛋白质组学的意义:种子发育、功能和农业应用的启示。
IF 1.9 1区 化学
Accounts of Chemical Research Pub Date : 2024-11-01 DOI: 10.1007/s10930-024-10240-x
Jameel R. Al-Obaidi, Su-Ee Lau, Yvonne Jing Mei Liew, Boon Chin Tan, Norasfaliza Rahmad
{"title":"Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications","authors":"Jameel R. Al-Obaidi,&nbsp;Su-Ee Lau,&nbsp;Yvonne Jing Mei Liew,&nbsp;Boon Chin Tan,&nbsp;Norasfaliza Rahmad","doi":"10.1007/s10930-024-10240-x","DOIUrl":"10.1007/s10930-024-10240-x","url":null,"abstract":"<div><p>Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant’s life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"43 6","pages":"1083 - 1103"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci. 在高粱 qHT7.1 和玉米 Brachytic 1 基因座中,一个 MYB 转录因子是植株高度的基础。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-01 DOI: 10.1111/tpj.17111
Qi Mu, Jialu Wei, Hallie K Longest, Hua Liu, Si Nian Char, Jacob T Hinrichsen, Laura E Tibbs-Cortes, Gregory R Schoenbaum, Bing Yang, Xianran Li, Jianming Yu
{"title":"A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci.","authors":"Qi Mu, Jialu Wei, Hallie K Longest, Hua Liu, Si Nian Char, Jacob T Hinrichsen, Laura E Tibbs-Cortes, Gregory R Schoenbaum, Bing Yang, Xianran Li, Jianming Yu","doi":"10.1111/tpj.17111","DOIUrl":"https://doi.org/10.1111/tpj.17111","url":null,"abstract":"<p><p>Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach 导致白内障的突变对αA-结晶素的影响:计算方法
IF 1.9 1区 化学
Accounts of Chemical Research Pub Date : 2024-11-01 DOI: 10.1007/s10930-024-10239-4
Kajal Abrol, Jayarani Basumatari, Jupita Handique, Muthukumaran Rajagopalan, Amutha Ramaswamy
{"title":"Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach","authors":"Kajal Abrol,&nbsp;Jayarani Basumatari,&nbsp;Jupita Handique,&nbsp;Muthukumaran Rajagopalan,&nbsp;Amutha Ramaswamy","doi":"10.1007/s10930-024-10239-4","DOIUrl":"10.1007/s10930-024-10239-4","url":null,"abstract":"<div><p>The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation. About 19 mutants of αA-crystallin along with native structure were simulated for 100 ns and the post-simulations analyses reveal pronounced dynamics of αA-crystallin due to the enhanced structure flexibility as its native compactness was lost and is witnessed mainly by the mutants R12L, R21L, R21Q, R54L, R65Q, R116C and R116H. It is observed that αA-crystallin discloses the NTD motions as the dominant one and the same was endorsed by the linear variation between Rg and the center-of-mass of αA-crystallin. Interestingly, such enhanced dynamics of αA-crystallin mutants associated with the structure flexibility is internally modulated by the dynamic exchange of secondary structure elements β-sheets and coils (R<sup>2</sup> = 0.619) during simulation. Besides, the observed pronounced dynamics of dimer interface region (β3-L6-β4 segment) of ACD along with CTD dynamics also gains importance. Particularly, the highly dynamic mutants are also characterized by enhanced non-covalent and hydrophobic interactions which renders detrimental effects towards its stability, and favours possible protein unfolding mechanisms. Overall, this study highlights the mutation-mediated structural distortions in αA-crystallin and demands the need for further potential development of inhibitors against cataract formation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"43 6","pages":"1045 - 1069"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信