Ana Luiza Lima Marques, Amanda Veridiana Krug, Gabriel Alberto Sans, Daniéle Gonçalves Papalia, Allan Augusto Kokkonen, Luana Paula Garlet, Betânia Vahl de Paula, Eduardo Maciel Haitzmann dos Santos, Luciane Almeri Tabaldi, William Natale, Vagner Brasil Costa, Gustavo Brunetto
{"title":"Kinetic, morphological, and photosynthetic parameters of absorption of nitrogen forms in olive cultivars (Olea europaea L.)","authors":"Ana Luiza Lima Marques, Amanda Veridiana Krug, Gabriel Alberto Sans, Daniéle Gonçalves Papalia, Allan Augusto Kokkonen, Luana Paula Garlet, Betânia Vahl de Paula, Eduardo Maciel Haitzmann dos Santos, Luciane Almeri Tabaldi, William Natale, Vagner Brasil Costa, Gustavo Brunetto","doi":"10.1007/s00468-025-02668-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Key message</h3><p>Knowledge of the efficiency of nitrogen absorption contributes to the selection of olive cultivars that are more efficient in absorbing N even at low concentrations in the environment.</p><h3>Abstract</h3><p>Fertilization of olive trees (<i>Olea europaea</i> L.) generally follows standardized nitrogen (N) doses, without considering the specific efficiency of each cultivar in N absorption. The lack of knowledge about kinetic parameters can result in excessive application, increasing environmental risks and impairing oil quality. The study aimed to characterize the most efficient olive cultivars in the absorption of N, NO<sub>3</sub><sup>−</sup>, and NH<sub>4</sub><sup>+</sup> forms, and to determine whether kinetic, photosynthetic variables, and root morphological parameters contribute to the selection of cultivars that are more efficient in the use of N. Four olive cultivars were grown hydroponically for 21 days in nutrient solution and transferred to 0.03 mol L⁻<sup>1</sup> CaSO₄ solution for 15 days. Subsequently, the plants received nutrient solution again and periodic collection began during a 61-h kinetic absorption march. The cultivar Coratina was the most efficient in NO<sub>3</sub><sup>−</sup> absorption, presenting higher <i>V</i><sub>max</sub> (maximum absorption speed) and lower <i>K</i><sub>m</sub> (Michaelis–Menten constant) and <i>C</i><sub>min</sub> (minimum concentration) values, which allows N absorption at low concentrations due to the affinity of root transporters. Its greater length, surface area, and quantity of fine roots favored this efficiency. It also presented better photosynthetic parameters and greater N accumulation in roots. Arbequina and Koroneiki had high <i>K</i><sub>m</sub> and <i>C</i><sub>min</sub> for NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>, while Arbosana presented lower <i>C</i><sub>min</sub> values for NH<sub>4</sub><sup>+</sup>. These results show that different cultivars have distinct nutritional strategies and that physiological and morphological parameters are essential in choosing the best cultivars and optimizing nitrogen fertilization, ensuring greater sustainability and productivity in olive cultivation.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-025-02668-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Key message
Knowledge of the efficiency of nitrogen absorption contributes to the selection of olive cultivars that are more efficient in absorbing N even at low concentrations in the environment.
Abstract
Fertilization of olive trees (Olea europaea L.) generally follows standardized nitrogen (N) doses, without considering the specific efficiency of each cultivar in N absorption. The lack of knowledge about kinetic parameters can result in excessive application, increasing environmental risks and impairing oil quality. The study aimed to characterize the most efficient olive cultivars in the absorption of N, NO3−, and NH4+ forms, and to determine whether kinetic, photosynthetic variables, and root morphological parameters contribute to the selection of cultivars that are more efficient in the use of N. Four olive cultivars were grown hydroponically for 21 days in nutrient solution and transferred to 0.03 mol L⁻1 CaSO₄ solution for 15 days. Subsequently, the plants received nutrient solution again and periodic collection began during a 61-h kinetic absorption march. The cultivar Coratina was the most efficient in NO3− absorption, presenting higher Vmax (maximum absorption speed) and lower Km (Michaelis–Menten constant) and Cmin (minimum concentration) values, which allows N absorption at low concentrations due to the affinity of root transporters. Its greater length, surface area, and quantity of fine roots favored this efficiency. It also presented better photosynthetic parameters and greater N accumulation in roots. Arbequina and Koroneiki had high Km and Cmin for NO3− and NH4+, while Arbosana presented lower Cmin values for NH4+. These results show that different cultivars have distinct nutritional strategies and that physiological and morphological parameters are essential in choosing the best cultivars and optimizing nitrogen fertilization, ensuring greater sustainability and productivity in olive cultivation.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.