{"title":"tpg31对黄角菊叶片表皮蜡沉积和抗旱性的影响。","authors":"Huihui Xu, Xiaojuan Liu, Zhuo Ban, Yingying Yang, Lingfeng Zhang, Quanxin Bi, Libing Wang","doi":"10.1111/pce.70144","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing frequency and severity under climate change, drought stress has become a predominant abiotic limiting factor of global plant productivity. Yellowhorn (Xanthoceras sorbifolium Bunge), an endemic species of woody oil tree in North China, has substantial developmental potential in arid and semi-arid regions. To elucidate the genetic basis of its drought response, a genome-wide association study (GWAS) of 13 leaf anatomical structure traits across 237 yellowhorn accessions was performed in this study, and 21 candidate genes that regulate leaf structural variation were identified. Among these genes, XsLTPG31, which encodes a nonspecific lipid transfer protein, was significantly induced by drought stress. Heterologous overexpression of XsLTPG31 in Arabidopsis, its transient overexpression in yellowhorn leaves, and virus-induced gene silencing (VIGS) of XsLTPG31 demonstrated that XsLTPG31 promotes the deposition of leaf epidermal wax and modulates drought resistance through facilitating the export of wax to the extracellular space. Moreover, we revealed that XsLTPG31 is directly activated by XsMYB16 via promoter binding. Taken together, the results of our study enhance the understanding of the regulatory mechanisms underlying LTPG-mediated cuticular wax deposition and might provide targets for the breeding of drought-tolerant varieties of yellowhorn.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XsLTPG31 Confers Leaf Cuticular Wax Deposition and Drought Resistance in Yellowhorn.\",\"authors\":\"Huihui Xu, Xiaojuan Liu, Zhuo Ban, Yingying Yang, Lingfeng Zhang, Quanxin Bi, Libing Wang\",\"doi\":\"10.1111/pce.70144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With increasing frequency and severity under climate change, drought stress has become a predominant abiotic limiting factor of global plant productivity. Yellowhorn (Xanthoceras sorbifolium Bunge), an endemic species of woody oil tree in North China, has substantial developmental potential in arid and semi-arid regions. To elucidate the genetic basis of its drought response, a genome-wide association study (GWAS) of 13 leaf anatomical structure traits across 237 yellowhorn accessions was performed in this study, and 21 candidate genes that regulate leaf structural variation were identified. Among these genes, XsLTPG31, which encodes a nonspecific lipid transfer protein, was significantly induced by drought stress. Heterologous overexpression of XsLTPG31 in Arabidopsis, its transient overexpression in yellowhorn leaves, and virus-induced gene silencing (VIGS) of XsLTPG31 demonstrated that XsLTPG31 promotes the deposition of leaf epidermal wax and modulates drought resistance through facilitating the export of wax to the extracellular space. Moreover, we revealed that XsLTPG31 is directly activated by XsMYB16 via promoter binding. Taken together, the results of our study enhance the understanding of the regulatory mechanisms underlying LTPG-mediated cuticular wax deposition and might provide targets for the breeding of drought-tolerant varieties of yellowhorn.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70144\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70144","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
XsLTPG31 Confers Leaf Cuticular Wax Deposition and Drought Resistance in Yellowhorn.
With increasing frequency and severity under climate change, drought stress has become a predominant abiotic limiting factor of global plant productivity. Yellowhorn (Xanthoceras sorbifolium Bunge), an endemic species of woody oil tree in North China, has substantial developmental potential in arid and semi-arid regions. To elucidate the genetic basis of its drought response, a genome-wide association study (GWAS) of 13 leaf anatomical structure traits across 237 yellowhorn accessions was performed in this study, and 21 candidate genes that regulate leaf structural variation were identified. Among these genes, XsLTPG31, which encodes a nonspecific lipid transfer protein, was significantly induced by drought stress. Heterologous overexpression of XsLTPG31 in Arabidopsis, its transient overexpression in yellowhorn leaves, and virus-induced gene silencing (VIGS) of XsLTPG31 demonstrated that XsLTPG31 promotes the deposition of leaf epidermal wax and modulates drought resistance through facilitating the export of wax to the extracellular space. Moreover, we revealed that XsLTPG31 is directly activated by XsMYB16 via promoter binding. Taken together, the results of our study enhance the understanding of the regulatory mechanisms underlying LTPG-mediated cuticular wax deposition and might provide targets for the breeding of drought-tolerant varieties of yellowhorn.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.