生命科学最新文献

筛选
英文 中文
Flavonoids Mitigate Nanoplastic Stress in Ginkgo biloba. 类黄酮缓解银杏叶中的纳米塑料应力
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-04 DOI: 10.1111/pce.15247
Jiawen Cui, Xiang Li, Quan Gan, Zhaogeng Lu, Yicheng Du, Iqra Noor, Li Wang, Sian Liu, Biao Jin
{"title":"Flavonoids Mitigate Nanoplastic Stress in Ginkgo biloba.","authors":"Jiawen Cui, Xiang Li, Quan Gan, Zhaogeng Lu, Yicheng Du, Iqra Noor, Li Wang, Sian Liu, Biao Jin","doi":"10.1111/pce.15247","DOIUrl":"https://doi.org/10.1111/pce.15247","url":null,"abstract":"<p><p>Microplastics/nanoplastics are a top global environmental concern and have stimulated surging research into plant-nanoplastic interactions. Previous studies have examined the responses of plants to nanoplastic stress at various levels. Plant-specialized (secondary) metabolites play crucial roles in plant responses to environmental stress, whereas their roles in response to nanoplastic stress remain unknown. Here, we systematically examined the physiological and biochemical responses of Ginkgo biloba, a species with robust metabolite-driven defenses, to polystyrene nanoplastics (PSNPs). PSNPs negatively affected seedling growth and induced phytotoxicity, oxidative stress, and nuclear damage. Notably, PSNPs caused significant flavonoid accumulation, which enhances plant tolerance and detoxification against PSNP stress. To determine whether this finding is universal in plants, we subjected Arabidopsis, poplar, and tomato to PSNP stress and verified the common response of enhanced flavonoids across these species. To further confirm the role of flavonoids, we employed genetic transformation and staining techniques, validating the importance of flavonoids in mitigating excessive oxidative stress induced by NPs. Matrix analysis of transgenic plants with enhanced flavonoids further demonstrated altered downstream pathways, allocating more energy towards resilience against nanoplastic stress. Collectively, our results reveal the flavonoid multifaceted roles in enhancing plant resilience to nanoplastic stress, providing new knowledge about plant responses to nanoplastic contamination.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient. 紫外线-A1 和蓝光区域的叶片光合作用和光保护适应性呈现连续的浅梯度。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-04 DOI: 10.1111/pce.15256
Xuguang Sun, Elias Kaiser, Leo F M Marcelis, Tao Li
{"title":"Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient.","authors":"Xuguang Sun, Elias Kaiser, Leo F M Marcelis, Tao Li","doi":"10.1111/pce.15256","DOIUrl":"https://doi.org/10.1111/pce.15256","url":null,"abstract":"<p><p>Although blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m<sup>-2</sup> s<sup>-1</sup>), as well as four treatments in which RB was supplemented with 50 μmol m<sup>-2</sup> s<sup>-1</sup> peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.e., photosynthetic capacity, pigmentation and dry mass content) as the peak wavelength increased. Furthermore, both UV-A1 and blue light grown leaves showed efficient photoprotection under high light intensity. When treated plants were transferred to fluctuating light for 5 days, leaves from all treatments showed increases in photosynthetic capacity, which were strongest in RB, followed by additional UV-A1 treatments; RB grown leaves showed reductions in maximum quantum yield of photosystem II, while UV-A1 grown leaves showed increases. We conclude that both UV-A1 and blue light effectively trigger photosynthetic and photoprotective acclimation, the extent of acclimation becoming stronger the longer the peak wavelength is. Acclimatory responses to UV-A1 and blue light are thus not distinct from one another, but follow a continuous gradient.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GmSTOP1-3 Increases Soybean Manganese Accumulation Under Phosphorus Deficiency by Regulating GmMATE2/13 and GmZIP6/GmIREG3. GmSTOP1-3 通过调控 GmMATE2/13 和 GmZIP6/GmIREG3 增加磷缺乏条件下大豆的锰积累。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-04 DOI: 10.1111/pce.15254
Guoxuan Liu, Qianqian Chen, Dongqian Li, Huafu Mai, Yuming Zhou, Maoxin Lin, Xiaonan Feng, Xiaoying Lin, Xing Lu, Kang Chen, Jiang Tian, Cuiyue Liang
{"title":"GmSTOP1-3 Increases Soybean Manganese Accumulation Under Phosphorus Deficiency by Regulating GmMATE2/13 and GmZIP6/GmIREG3.","authors":"Guoxuan Liu, Qianqian Chen, Dongqian Li, Huafu Mai, Yuming Zhou, Maoxin Lin, Xiaonan Feng, Xiaoying Lin, Xing Lu, Kang Chen, Jiang Tian, Cuiyue Liang","doi":"10.1111/pce.15254","DOIUrl":"https://doi.org/10.1111/pce.15254","url":null,"abstract":"<p><p>Mineral nutrient deficiencies and metal ion toxicities coexist on acid soils. Phosphorus (P) deficiency in plants is generally accompanied with significant levels of leaf manganese (Mn) accumulation. However, the molecular regulatory mechanisms underpinning remain unclear. The present study found that P-deficient soybean plants accumulated more Mn compared to P-sufficient ones on acid soils in both field and greenhouse experiments. Meanwhile, both P deficiency and Mn toxicity enhanced the expression of GmSTOP1-3. Over-expressing GmSTOP1-3 enhanced Mn accumulation in transgenic soybean hairy roots, but RNA-interference did not show obvious differences. Moreover, transgenic soybeans with GmSTOP1-3-overexpression showed enhanced root citrate exudation and augmented Mn accumulation. RNA-sequence identified four downstream genes of GmSTOP1-3, including multidrug and toxic compound extrusion (GmMATE2/13) and metal transporter genes (GmZIP6/GmIREG3), which encode plasma membrane proteins. GmSTOP1-3 activated the transcription of these four genes by directly binding to their promoter regions. In addition, both GmZIP6 and GmIREG3 functioned in Mn uptake as manifested by the higher Mn concentration and decreased growth of soybean hairy roots with their overexpression. Taken together, it is suggested that upregulation of GmSTOP1-3 by low P stress on acid soils activates transcripts of GmMATE2/13 and GmZIP6/GmIREG3, which consequently result in enhanced Mn accumulation in soybean.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABI3 regulates ABI1 function to control cell length in primary root elongation zone. ABI3 可调节 ABI1 的功能,从而控制主根伸长区的细胞长度。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-04 DOI: 10.1111/tpj.17121
Saptarshi Datta, Drishti Mandal, Sicon Mitra, Swarnavo Chakraborty, Ronita Nag Chaudhuri
{"title":"ABI3 regulates ABI1 function to control cell length in primary root elongation zone.","authors":"Saptarshi Datta, Drishti Mandal, Sicon Mitra, Swarnavo Chakraborty, Ronita Nag Chaudhuri","doi":"10.1111/tpj.17121","DOIUrl":"https://doi.org/10.1111/tpj.17121","url":null,"abstract":"<p><p>Post-embryonic primary root growth is effectively an interplay of several hormone signalling pathways. Here, we show that the ABA-responsive transcription factor ABI3 controls primary root growth through the regulation of JA signalling molecule JAZ1 along with ABA-responsive factor ABI1. In the absence of ABI3, the primary root elongation zone is shortened with significantly reduced cell length. Expression analyses and ChIP-based assays indicate that ABI3 negatively regulates JAZ1 expression by occupying its upstream regulatory sequence and enriching repressive histone modification mark H3K27 trimethylation, thereby occluding RNAPII occupancy. Previous studies have shown that JAZ1 interacts with ABI1, the protein phosphatase 2C, that works during ABA signalling. Our results indicate that in the absence of ABI3, when JAZ1 expression levels are high, the ABI1 protein shows increased stability, compared to when JAZ1 is absent, or ABI3 is overexpressed. Consequently, in the abi3-6 mutant, due to the higher stability of ABI1, reduced phosphorylation of plasma membrane H<sup>+</sup>-ATPase (AHA2) occurs. HPTS staining further indicated that abi3-6 root cell apoplasts show reduced protonation, compared to wild-type and ABI3 overexpressing seedlings. Such impeded proton extrusion negatively affects cell length in the primary root elongation zone. ABI3 therefore controls cell elongation in the primary root by affecting the ABI1-dependent protonation of root cell apoplasts. In summary, ABI3 controls the expression of JAZ1 and in turn modulates the function of ABI1 to regulate cell length in the elongation zone during primary root growth.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The power of networking in science and academia 科学和学术界网络的力量。
IF 3.2 4区 医学
Immunology & Cell Biology Pub Date : 2024-11-04 DOI: 10.1111/imcb.12832
Jessica G Borger
{"title":"The power of networking in science and academia","authors":"Jessica G Borger","doi":"10.1111/imcb.12832","DOIUrl":"10.1111/imcb.12832","url":null,"abstract":"<p>In science and academia, success is often shaped by both knowledge and networking. Reflecting on nearly two decades in academic research, I recount my experience as a postdoctoral immunologist returning to Australia with limited local connections and support. Upon re-establishing myself in Australia, I initially faced barriers that restricted my visibility and collaborations. A turning point came when personal challenges motivated me to actively network, leading to valuable collaborations and career opportunities. By initiating conversations with academic leaders and peers, I expanded my network and established numerous leadership roles, even as a “junior” postdoc through founding a symposium, engaging with an immunology society, volunteering on various academic and advocacy committees, contributing to public outreach and nationally advocating for gender equity in science. These experiences reinforced that networking is about fostering meaningful relationships and creating opportunities to grow professionally. I provide advice on how to increase your networks by volunteering at work, when attending conferences, through contributing to societies and building a social media presence. My journey highlights the importance of being proactive in building networks, which can open doors, amplify one's voice, and drive career advancement in science and academia.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"871-877"},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi. 变暖和紫外线辐射减轻了病毒感染对微藻 Emiliania huxleyi 的影响。
IF 6 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-04 DOI: 10.1111/pce.15262
Qianqian Fu, Ruiping Huang, Futian Li, John Beardall, David A Hutchins, Jingwen Liu, Kunshan Gao
{"title":"Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi.","authors":"Qianqian Fu, Ruiping Huang, Futian Li, John Beardall, David A Hutchins, Jingwen Liu, Kunshan Gao","doi":"10.1111/pce.15262","DOIUrl":"https://doi.org/10.1111/pce.15262","url":null,"abstract":"<p><p>The marine microalga Emiliania huxleyi is widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host-virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus-infected cells, the combination of UVR and warming (+4°C) led to a 13-fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5-7-fold. This was attributed to upregulated expression of genes related to carboxylation and light-harvesting proteins under the influence of UVR, and to warming-reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring characteristic features for effective HCN1 channel inhibition using integrated analytical approaches: 3D QSAR, molecular docking, homology modelling, ADME and molecular dynamics 利用综合分析方法探索有效抑制 HCN1 通道的特征:3D QSAR、分子对接、同源建模、ADME 和分子动力学。
IF 2.2
ACS Applied Bio Materials Pub Date : 2024-11-03 DOI: 10.1007/s00249-024-01726-8
Shiwani Sharma, Priyanka Rana, Vijayta Dani Chadha, Neelima Dhingra, Tanzeer Kaur
{"title":"Exploring characteristic features for effective HCN1 channel inhibition using integrated analytical approaches: 3D QSAR, molecular docking, homology modelling, ADME and molecular dynamics","authors":"Shiwani Sharma,&nbsp;Priyanka Rana,&nbsp;Vijayta Dani Chadha,&nbsp;Neelima Dhingra,&nbsp;Tanzeer Kaur","doi":"10.1007/s00249-024-01726-8","DOIUrl":"10.1007/s00249-024-01726-8","url":null,"abstract":"<div><p>Neuropathic pain (NP) is characterized by hyperalgesia, allodynia, and spontaneous pain. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel involved in neuronal hyperexcitability, has emerged as an important target for the drug development of NP. HCN channels exist in four different isoforms, where HCN1 is majorly expressed in dorsal root ganglion having an imperative role in NP pathophysiology. A specific HCN1 channel inhibitor will hold the better potential to treat NP without disturbing the physiological roles of other HCN isoforms. The main objective is to identify and analyze the chemical properties of scaffolds with higher HCN1 channel specificity. The 3D-QSAR studies highlight the hydrophobic &amp; hydrogen bond donor groups enhance specificity towards the HCN1 channel. Further, the molecular interaction of the scaffolds with the HCN1 pore was studied by generating an open-pore model of the HCN1 channel using homology modelling and then docking the molecules with it. In addition, the important residues involved in the interaction between HCN1 pore and scaffolds were also identified. Moreover, ADME predictions revealed that compounds had good oral bioavailability and solubility characteristics. Subsequently, molecular dynamics simulation studies revealed the better stability of the lead molecules A7 and A9 during interactions and ascertained them as potential drug candidates. Cumulative studies provided the important structural features for enhancing HCN1 channel-specific inhibition, paving the way to design and develop novel specific HCN1 channel inhibitors.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"53 7-8","pages":"447 - 464"},"PeriodicalIF":2.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement in photosynthesis under different light intensities is highly linked to domestication stages in cotton. 不同光照强度下光合作用的改善与棉花的驯化阶段密切相关。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/tpj.17099
Zhangying Lei, Mengmeng Jia, Heng Wang, Marc Carriquí, Ülo Niinemets, Yunrui Chen, Yang He, Ziliang Li, Dongsheng Sun, Ziqi He, Xiafei Li, Daohua He, Wangfeng Zhang, Fang Liu, Yali Zhang
{"title":"Improvement in photosynthesis under different light intensities is highly linked to domestication stages in cotton.","authors":"Zhangying Lei, Mengmeng Jia, Heng Wang, Marc Carriquí, Ülo Niinemets, Yunrui Chen, Yang He, Ziliang Li, Dongsheng Sun, Ziqi He, Xiafei Li, Daohua He, Wangfeng Zhang, Fang Liu, Yali Zhang","doi":"10.1111/tpj.17099","DOIUrl":"https://doi.org/10.1111/tpj.17099","url":null,"abstract":"<p><p>Domestication has dramatically increased crop size and biomass, reflecting the enhanced accumulation of photosynthates. However, we still lack solid empirical data on the impacts of domestication on photosynthetic rates at different light intensities and on leaf anatomy, and of the relationships of photosynthesis with aboveground biomass. In this study, we measured the photosynthetic rate at three photosynthetic photon flux densities of 2000 (high), 1000 (moderate) and 400 μmol m<sup>-2</sup> sec<sup>-1</sup> (low light intensity), dark respiration, relative chlorophyll content (SPAD), leaf morphology, and aboveground biomass in 40 wild, 91 semiwild, and 42 domesticated cotton genotypes. The study was replicated for two years (growing years 2018 and 2019). During the first domestication stage (transition from wild to semiwild genotypes), domestication led to higher photosynthetic rates measured under high light intensity, higher SPAD, larger leaf area (LA), and lower leaf mass per unit area (LMA), contributing to greater aboveground biomass accumulation in both study years. During the second domestication stage (transition from semiwild to domesticated genotypes), domestication significantly enhanced photosynthesis under low light intensity and reduced LMA, which were associated with increased aboveground biomass in both study years. In conclusion, photosynthesis improvement at different light intensities has been a gradual domestication phase specific process with the rate of photosynthesis enhanced under high light during the first domestication stage, and under low light during the second domestication stage. We argue that these differences reflect a higher proportion of LA photosynthesizing under low light due to enhanced canopy expansion at the second domestication stage.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens. 专利植物中 PSI-NDH 超级复合物的独特结构属性。
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/tpj.17116
Monika Opatíková, Roman Kouřil
{"title":"Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens.","authors":"Monika Opatíková, Roman Kouřil","doi":"10.1111/tpj.17116","DOIUrl":"https://doi.org/10.1111/tpj.17116","url":null,"abstract":"<p><p>Cyclic electron transport around photosystem I (PSI) is essential for the protection of the photosynthetic apparatus in plants under diverse light conditions. This process is primarily mediated by Proton Gradient Regulation 5 protein/Proton Gradient Regulation 5-like photosynthetic phenotype 1 protein (PGR5/PGRL1) and NADH dehydrogenase-like complex (NDH). In angiosperms, NDH interacts with two PSI complexes through distinct monomeric antennae, LHCA5 and LHCA6, which is crucial for its higher stability under variable light conditions. This interaction represents an advanced evolutionary stage and offers limited insight into the origin of the PSI-NDH supercomplex in evolutionarily older organisms. In contrast, the moss Physcomitrium patens (Pp), which retains the lhca5 gene but lacks the lhca6, offers a glimpse into an earlier evolutionary stage of the PSI-NDH supercomplex. Here we present structural evidence of the Pp PSI-NDH supercomplex formation by single particle electron microscopy, demonstrating the unique ability of Pp to bind a single PSI in two different configurations. One configuration closely resembles the angiosperm model, whereas the other exhibits a novel PSI orientation, rotated clockwise. This structural flexibility in Pp is presumably enabled by the variable incorporation of LHCA5 within PSI and is indicative of an early evolutionary adaptation that allowed for greater diversity at the PSI-NDH interface. Our findings suggest that this variability was reduced as the structural complexity of the NDH complex increased in vascular plants, primarily angiosperms. This study not only clarifies the evolutionary development of PSI-NDH supercomplexes but also highlights the dynamic nature of the adaptive mechanisms of plant photosynthesis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of phosphorylation on CsTT12 transport function: A comparative phosphoproteomic analysis of flavonoid biosynthesis in tea plants (Camellia sinensis). 磷酸化对 CsTT12 转运功能的影响:茶树(Camellia sinensis)黄酮类化合物生物合成的磷酸化蛋白质组比较分析
IF 6.2 2区 材料科学
ACS Applied Nano Materials Pub Date : 2024-11-03 DOI: 10.1111/tpj.17120
Na-Na Wang, Ke-Yan Xiu, Min Deng, Qi-Yun Liu, Di-Di Jin, Qiao-Mei Zhao, Huang-Qiang Su, Ting-Ting Qiu, Hai-Yan Wang, Ya-Jun Liu, Xiao-Lan Jiang, Tao Xia, Li-Ping Gao
{"title":"Effects of phosphorylation on CsTT12 transport function: A comparative phosphoproteomic analysis of flavonoid biosynthesis in tea plants (Camellia sinensis).","authors":"Na-Na Wang, Ke-Yan Xiu, Min Deng, Qi-Yun Liu, Di-Di Jin, Qiao-Mei Zhao, Huang-Qiang Su, Ting-Ting Qiu, Hai-Yan Wang, Ya-Jun Liu, Xiao-Lan Jiang, Tao Xia, Li-Ping Gao","doi":"10.1111/tpj.17120","DOIUrl":"https://doi.org/10.1111/tpj.17120","url":null,"abstract":"<p><p>Monomeric flavan-3-ols and their oligomeric forms, proanthocyanidins (PAs), are closely related to the bitterness of tea beverages. Monomeric flavan-3-ols are characteristic flavor compounds in tea. Increasing the content of PAs and anthocyanins enhances the resistance of tea plants to pathogen invasion but decreases the quality of tea beverages. MATE family transporters play a critical role in transferring monomeric flavan-3-ols and anthocyanins into vacuoles for storage or subsequent condensation into PAs. Their activities modulate the ratio of monomeric flavan-3-ols to PAs and increase anthocyanin content in tea plants. In this study, it was observed that the gene expression and protein phosphorylation level of the MATE transporter CsTT12, a vacuole-localized flavonoid transporter, were notably upregulated following exogenous sucrose treatment, promoting PA synthesis in tea plants. Further analysis revealed that overexpression of CsTT12 and CsTT12<sup>S17D</sup> significantly increased the content of anthocyanins and PAs in plants, whereas CsTT12<sup>S17A</sup> did not. In CsTT12 knockdown plants, PA's accumulation decreased significantly, while monomeric catechin content increased. Moreover, phosphorylation modification enhanced the vacuolar membrane localization of CsTT12, whereas dephosphorylation weakened its vacuolar membrane localization. This study uncovers the crucial role of phosphorylation in flavonoid biosynthesis and provides insights into balancing quality improvements and resistance enhancement.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信