{"title":"Engineering and comparison of cas12a-based genome editing systems in plants","authors":"Martin Bircheneder, Martin Parniske","doi":"10.1111/tpj.70410","DOIUrl":"https://doi.org/10.1111/tpj.70410","url":null,"abstract":"<p>While Cas9 and Cas12a are both RNA-guided endonucleases used for genome editing, only Cas12a is able to process pre-crRNA via its additional ribonuclease activity. This feature reduces the complexity of Cas12a versus Cas9-based genome editing systems thus providing an attractive alternative for generating site-specific mutations in plants. Here we aimed to improve the efficiency of the <i>cas12a</i>-based generation of two double-strand breaks flanking the open reading frame of a target gene, leading to its full deletion. To this end, we compared the relative impact of different components on <i>cas12a</i>-based gene deletion efficiency in three different eudicotyledons, <i>Arabidopsis thaliana</i>, <i>Lotus japonicus</i>, and <i>Nicotiana benthamiana</i>. We detected the highest <i>cas12a</i>-based editing efficiency with a combination of suitable promoters for crRNA and <i>cas12a</i> expression, a tandem terminator to control <i>cas12a</i> expression, a re-coded <i>cas12a</i>, adapted to the codon usage of <i>Arabidopsis</i> and engineered to carry introns, and encoding a Cas12a flanked by a nuclear localization signal at both ends. Our work revealed the high potential for improving <i>cas12a</i>-based genome editing systems for plant genetic research.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144929683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei He, Lihua Zhuang, Tao Chen, Kai Lu, Wenhua Liang, Ling Zhao, Chunfang Zhao, Cheng Li, Qingyong Zhao, Zhen Zhu, Cailin Wang, Yadong Zhang
{"title":"Functional characterization of NLG14 provides novel insights into the synergistic improvement of grain length, grain quality and salt tolerance in rice","authors":"Lei He, Lihua Zhuang, Tao Chen, Kai Lu, Wenhua Liang, Ling Zhao, Chunfang Zhao, Cheng Li, Qingyong Zhao, Zhen Zhu, Cailin Wang, Yadong Zhang","doi":"10.1111/tpj.70455","DOIUrl":"https://doi.org/10.1111/tpj.70455","url":null,"abstract":"<div>\u0000 \u0000 <p>Rice, as a vital food crop, faces persistent challenges in breeding programs aimed at achieving stable high yield under environmental stresses due to intrinsic trade-off mechanisms. This study functionally characterizes <i>NARROW AND LONGER GRAIN 14 (NLG14)</i>, which encodes a spermine synthase. Loss-of-function <i>nlg14</i> mutants exhibit slender grains due to enhanced cell expansion and proliferation, alongside significantly improved grain quality—manifested as reduced chalkiness, lower amylose/protein content, higher gel consistency, and superior taste value. These improvements correlate with decreased reactive oxygen species (ROS) accumulation and programmed cell death (PCD) in developing endosperm. Crucially, <i>nlg14</i> confers enhanced salt tolerance by elevating the K<sup>+</sup>/Na<sup>+</sup> ratio and antioxidant enzyme activities. Mechanistically, disrupted spermine biosynthesis in <i>nlg14</i> redirects metabolic flux toward ethylene synthesis, activating ethylene signaling to enhance ROS scavenging and ion homeostasis. Furthermore, the transcription factor OsMYB2 directly binds to the promoter of <i>NLG14</i> and represses its expression via the abscisic acid (ABA) pathway. Haplotype analysis identifies natural <i>NLG14</i> variants (Class A) associated with longer grains, improved quality, and higher salt tolerance, demonstrating breeding potential. Collectively, NLG14 integrates grain morphology, quality, and stress adaptation through polyamine-ethylene-ABA crosstalk. Our results provide useful gene and germplasm resources for rice molecular breeding and shed insights for understanding yield and salt tolerance trade-off mechanisms.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144929685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Jia, Min Chen, Jie Zhou, Yi Xu, Junlong Huang, Yadong Yang, Bahar S Razavi, Zhaohai Zeng, Yakov Kuzyakov, Huadong Zang
{"title":"Diversified Crop Rotations Strengthen Maize Seedling Drought Tolerance by Modulating Rhizosphere Microbiota and Enzyme Activities.","authors":"Rong Jia, Min Chen, Jie Zhou, Yi Xu, Junlong Huang, Yadong Yang, Bahar S Razavi, Zhaohai Zeng, Yakov Kuzyakov, Huadong Zang","doi":"10.1111/pce.70150","DOIUrl":"https://doi.org/10.1111/pce.70150","url":null,"abstract":"<p><p>Although diversified crop rotations increase drought tolerance and system productivity, the underlying mechanisms conferring this resilience in crop-soil-microorganisms systems remain incomplete. Maize drought tolerance mechanisms were evaluated in a 20-year experiment with low, medium, and high crop diversity rotations using soil zymography to visualize enzyme activity distribution and high-throughput sequencing to assess microbial communities. High crop diversity increased maize shoot biomass by 56%-87% and reduced drought-induced root biomass loss by 14%-59% compared to low crop diversity. Root diameter increased by 1.7-2.5 times leading to better drought tolerance by 2.2-2.7 times, and stabile key rhizosphere microbiota. The complexity of the rhizosphere bacterial network increased with crop diversification, and the keystone taxa (such as biofilm-producing Pseudomonas ) raised maize drought tolerance by increasing rhizosphere water retention. These microbiota increased habitat resilience under drought, increasing ecosystem provision and regulatory functions. Activities and hotspot areas of enzymes related to carbon and nitrogen cycling decreased with crop diversification, but changed minimally under drought, indicating that this enzymatic resilience could contribute to maize drought tolerance. In conclusion, crop diversification enriches drought-tolerance microbial species in soil that stabilize the rhizosphere microenvironment and facilitate root proliferation, underscoring the importance of crop-microbial interactions for drought resilience.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging Viral Threats in Rice: A Decade of Discovery and Implications for Crop Protection.","authors":"Xinlun Ding, Feng Wang, Pingping Liu, Jie Zhang, Zujian Wu, Yan-Hong Han, Jianguo Wu","doi":"10.1111/pce.70156","DOIUrl":"10.1111/pce.70156","url":null,"abstract":"<p><p>Rice viral diseases pose severe threats to global food security, with over 20 viruses identified in China alone. The advent of high-throughput sequencing has accelerated the discovery of novel viruses in cultivated and wild rice, unveiling previously undetected threats. This review systematically summarises newly discovered rice viruses over the past decade, analyzing their genomic characteristics, transmission modes, and pathogenic mechanisms. Key findings include the identification of rice stripe mosaic virus, rice tiller inhibition virus (RTIV), RTIV2 and rice curl dwarf-associated virus, among others, highlighting their interactions with host immunity and insect vectors. Notably, emerging viruses exhibit novel infection strategies, including interference with RNA silencing, hormone signalling, and autophagy pathways. Moreover, mixed infections and cross-species transmission raise concerns about evolving disease dynamics. Understanding these viral threats is crucial for developing integrated disease management strategies, including resistant cultivars and vector control measures. This review provides a comprehensive resource for advancing rice virology research and guiding future efforts in monitoring and mitigating viral diseases affecting global rice production.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SOBIR1 Links Potato Responses to Potato Tuber Moth Attack and High Temperature Stress.","authors":"Chuzhen Chen, Ricardo A R Machado, Jian Zhong, Yadong Zhang, Wenjing He, Xiaoli He, Zhiyao Mao, Asim Munawar, Zengrong Zhu, Wenwu Zhou","doi":"10.1111/pce.70158","DOIUrl":"https://doi.org/10.1111/pce.70158","url":null,"abstract":"<p><p>Herbivory and high temperature stress affect plant performance and frequently co-occur under natural conditions. The molecular mechanisms by which plants coordinate responses to these two stresses deserve more attention. Here, we explored how StSOBIR1, a leucine-rich repeat receptor-like kinase gene, modulates plant responses to herbivory and high temperature stress using genetic, molecular, biological, and chemical analysis approaches. StSOBIR1 encodes a plasma membrane-localized protein and its expression is rapidly induced upon herbivore attack. StSOBIR1 negatively regulates jasmonic acid (JA) signaling and JA-mediated defenses, thereby hindering herbivore resistance to potato tuber moth (Phthorimaea operculella) at a normal temperature (22°C). In contrast, the transcripts of StSOBIR1 were suppressed by high temperature (32°C). StSOBIR1 positively regulates plant responses to high temperature stress, including the accumulation of sucrose, proline and chlorophylls. Moreover, at high temperature, both the StSOBIR1-knock down and overexpression plants exhibited similar JA signaling and herbivore resistance to wild-type plants. Transcriptome analysis revealed that high temperature interferes with StSOBIR1-mediated defensive responses to herbivory by disrupting herbivory-associated gene co-expression networks and reprioritizing its functions. Taken together, these results show that StSOBIR1-mediated fine-tune plant responses to herbivory and high temperature, while under combined stresses, its negative regulatory function over herbivore defense is lost.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The miR444f Regulates Root Development via Gibberellin Metabolic Pathway in Rice.","authors":"Sheng Huang, Yuqi Liu, Jiyuan Li, Pedro García, Chanjuan Mao, Jinshan Zhang, Xiaoguo Zhu","doi":"10.1111/pce.70148","DOIUrl":"https://doi.org/10.1111/pce.70148","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are critical regulators of root development, further impacting plant growth and environmental adaptability. As an important miRNA family, the role of MIR444 in the root development of rice remains largely unknown. Here, we observed that loss of miR444f, which belongs to the MIR444 family, exhibited significant developmental defects in primary and lateral roots during early growth stages. Cellular and molecular analyses revealed that miR444f affected growth activity, cell division, and elongation in the root apical meristem. This effect was mediated through its targeting of the MADS-box transcription factors OsMADS27 and OsMADS57, which are key regulators of the gibberellin (GA) metabolic pathway. Subsequently, the expression of GA metabolic genes and GA accumulation were significantly altered. Furthermore, exogenous GA restores root growth defects in miR444f mutants, confirming the central role of the GA signalling pathway in miR444f-regulated root growth. These findings offer strategic insights for optimizing crop root architecture and function through genetic engineering, aimed at enhancing productivity and environmental resilience.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial Acetyltransferase Effector AopP2 Primes Effector-Triggered Immunity in Watermelon by Acetylating a Conserved Transcription Factor.","authors":"Jingjing Huang, Peimin He, Chen Zhong, Tong Qin, Hao Wang, Jiahuan Shi, Senyi Wei, Dong Chen, Jianlong Zhao, Ali Chai, Yumin Kan, Shanshan Yang, Xiaoxiao Zhang","doi":"10.1111/pce.70162","DOIUrl":"https://doi.org/10.1111/pce.70162","url":null,"abstract":"<p><p>Bacterial fruit blotch (BFB), caused by Paracidovorax citrulli (Pc), threatens global watermelon production, yet genetic resistance remains scarce. This study investigates the potential of non-adapted interaction triggered by Paracidovorax avenae (Pa), a maize pathogen, to combat BFB in watermelon. We demonstrate that Pa strain ATCC 19860 elicits a hypersensitive response (HR) in watermelon via its type III secretion system (T3SS), inducing effector-triggered immunity (ETI). To rapidly screen for Pa type III effectors (T3Es) related to ETI, the nonpathogenic Pseudomonas fluorescens Effector-to-Host Analyzer (EtHAn) strain was used for transient expression of T3Es in watermelon. Among 13 candidate T3Es, the acetyltransferase AopP2 emerged as a potent inducer of programmed cell death (PCD) in watermelon, dependent on its enzymatic activity. AopP2 suppresses reactive oxygen species (ROS) bursts, salicylic acid (SA) signalling, while stabilizing the transcription factor ClTFIIB2 via acetylation, thereby activating ETI. Silencing ClTFIIB2 compromised both basal resistance to Pc and AopP2-induced PCD, whereas transient ClTFIIB2 expression via the EtHAn system enhanced resistance to Pc and AopP2-induced PCD. Notably, pretreatment with low-dose AopP2 primed watermelon defences, significantly reducing Pc proliferation. This study demonstrates that AopP2 suppresses pattern-triggered immunity (PTI) via CITFIIB2 acetylation while triggering ETI, revealing a conserved immune node exploitable for engineering resistance in watermelon. Our findings highlight the potential of non-adapted pathogen effectors as tools for activating ETI to identify disease resistance genes, and provide the first evidence of ClTFIIB2's critical role in watermelon immunity, offering novel strategies for BFB management.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liang Fang, Paul C Struik, Xinyou Yin, Pierre Martre
{"title":"Canopy Carbon- and Water-Use Efficiencies in Response to Temperature and Water Deficit for Wheat.","authors":"Liang Fang, Paul C Struik, Xinyou Yin, Pierre Martre","doi":"10.1111/pce.70147","DOIUrl":"https://doi.org/10.1111/pce.70147","url":null,"abstract":"<p><p>The frequency and intensity of extreme climatic events increase the complexity in assessing climate change impacts on (agro)ecosystem functions and crop production. A better understanding of carbon and water fluxes for crop plants under climate change requires research based on direct canopy-scale measurements. By analysing a canopy gas exchange data set synthesised from 8 years' experimentation under semi-field conditions for the post-anthesis period of five wheat genotypes, we examined canopy carbon and water fluxes as well as carbon use efficiency (CUE) and water use efficiency (WUE) under varying environmental conditions. CUE was variable, and was negatively affected by high temperatures. Moreover, CUE responded differently to daily, daytime, and nighttime temperatures, and was most sensitive to nighttime temperatures. The response of WUE to increasing temperatures was dominated by the response of carbon fluxes, while the relative contribution of water fluxes to WUE responses increased under water deficit. WUE based on gross and net photosynthesis responded differently to environmental variables, primarily due to the differences in CUE. The findings increase our understanding of canopy carbon and water fluxes under various environmental conditions and highlight the necessity for future efforts to improve crop CUE and WUE under climate change.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144937528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}