The miR444f Regulates Root Development via Gibberellin Metabolic Pathway in Rice.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Sheng Huang, Yuqi Liu, Jiyuan Li, Pedro García, Chanjuan Mao, Jinshan Zhang, Xiaoguo Zhu
{"title":"The miR444f Regulates Root Development via Gibberellin Metabolic Pathway in Rice.","authors":"Sheng Huang, Yuqi Liu, Jiyuan Li, Pedro García, Chanjuan Mao, Jinshan Zhang, Xiaoguo Zhu","doi":"10.1111/pce.70148","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are critical regulators of root development, further impacting plant growth and environmental adaptability. As an important miRNA family, the role of MIR444 in the root development of rice remains largely unknown. Here, we observed that loss of miR444f, which belongs to the MIR444 family, exhibited significant developmental defects in primary and lateral roots during early growth stages. Cellular and molecular analyses revealed that miR444f affected growth activity, cell division, and elongation in the root apical meristem. This effect was mediated through its targeting of the MADS-box transcription factors OsMADS27 and OsMADS57, which are key regulators of the gibberellin (GA) metabolic pathway. Subsequently, the expression of GA metabolic genes and GA accumulation were significantly altered. Furthermore, exogenous GA restores root growth defects in miR444f mutants, confirming the central role of the GA signalling pathway in miR444f-regulated root growth. These findings offer strategic insights for optimizing crop root architecture and function through genetic engineering, aimed at enhancing productivity and environmental resilience.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70148","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) are critical regulators of root development, further impacting plant growth and environmental adaptability. As an important miRNA family, the role of MIR444 in the root development of rice remains largely unknown. Here, we observed that loss of miR444f, which belongs to the MIR444 family, exhibited significant developmental defects in primary and lateral roots during early growth stages. Cellular and molecular analyses revealed that miR444f affected growth activity, cell division, and elongation in the root apical meristem. This effect was mediated through its targeting of the MADS-box transcription factors OsMADS27 and OsMADS57, which are key regulators of the gibberellin (GA) metabolic pathway. Subsequently, the expression of GA metabolic genes and GA accumulation were significantly altered. Furthermore, exogenous GA restores root growth defects in miR444f mutants, confirming the central role of the GA signalling pathway in miR444f-regulated root growth. These findings offer strategic insights for optimizing crop root architecture and function through genetic engineering, aimed at enhancing productivity and environmental resilience.

miR444f通过赤霉素代谢途径调控水稻根系发育
MicroRNAs (miRNAs)是根系发育的重要调控因子,进一步影响植物的生长和环境适应性。作为一个重要的miRNA家族,MIR444在水稻根系发育中的作用在很大程度上尚不清楚。在这里,我们观察到MIR444家族的miR444f的缺失在生长早期的主根和侧根中表现出明显的发育缺陷。细胞和分子分析表明,miR444f影响根尖分生组织的生长活性、细胞分裂和伸长。这种作用是通过靶向MADS-box转录因子OsMADS27和OsMADS57介导的,这两个转录因子是赤霉素(GA)代谢途径的关键调节因子。随后,GA代谢基因的表达和GA积累显著改变。此外,外源GA恢复了miR444f突变体的根生长缺陷,证实了GA信号通路在miR444f调控的根生长中的核心作用。这些发现为通过基因工程优化作物根系结构和功能提供了战略见解,旨在提高生产力和环境适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信