{"title":"SOBIR1与马铃薯对马铃薯块茎蛾侵害和高温胁迫的反应有关。","authors":"Chuzhen Chen, Ricardo A R Machado, Jian Zhong, Yadong Zhang, Wenjing He, Xiaoli He, Zhiyao Mao, Asim Munawar, Zengrong Zhu, Wenwu Zhou","doi":"10.1111/pce.70158","DOIUrl":null,"url":null,"abstract":"<p><p>Herbivory and high temperature stress affect plant performance and frequently co-occur under natural conditions. The molecular mechanisms by which plants coordinate responses to these two stresses deserve more attention. Here, we explored how StSOBIR1, a leucine-rich repeat receptor-like kinase gene, modulates plant responses to herbivory and high temperature stress using genetic, molecular, biological, and chemical analysis approaches. StSOBIR1 encodes a plasma membrane-localized protein and its expression is rapidly induced upon herbivore attack. StSOBIR1 negatively regulates jasmonic acid (JA) signaling and JA-mediated defenses, thereby hindering herbivore resistance to potato tuber moth (Phthorimaea operculella) at a normal temperature (22°C). In contrast, the transcripts of StSOBIR1 were suppressed by high temperature (32°C). StSOBIR1 positively regulates plant responses to high temperature stress, including the accumulation of sucrose, proline and chlorophylls. Moreover, at high temperature, both the StSOBIR1-knock down and overexpression plants exhibited similar JA signaling and herbivore resistance to wild-type plants. Transcriptome analysis revealed that high temperature interferes with StSOBIR1-mediated defensive responses to herbivory by disrupting herbivory-associated gene co-expression networks and reprioritizing its functions. Taken together, these results show that StSOBIR1-mediated fine-tune plant responses to herbivory and high temperature, while under combined stresses, its negative regulatory function over herbivore defense is lost.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOBIR1 Links Potato Responses to Potato Tuber Moth Attack and High Temperature Stress.\",\"authors\":\"Chuzhen Chen, Ricardo A R Machado, Jian Zhong, Yadong Zhang, Wenjing He, Xiaoli He, Zhiyao Mao, Asim Munawar, Zengrong Zhu, Wenwu Zhou\",\"doi\":\"10.1111/pce.70158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herbivory and high temperature stress affect plant performance and frequently co-occur under natural conditions. The molecular mechanisms by which plants coordinate responses to these two stresses deserve more attention. Here, we explored how StSOBIR1, a leucine-rich repeat receptor-like kinase gene, modulates plant responses to herbivory and high temperature stress using genetic, molecular, biological, and chemical analysis approaches. StSOBIR1 encodes a plasma membrane-localized protein and its expression is rapidly induced upon herbivore attack. StSOBIR1 negatively regulates jasmonic acid (JA) signaling and JA-mediated defenses, thereby hindering herbivore resistance to potato tuber moth (Phthorimaea operculella) at a normal temperature (22°C). In contrast, the transcripts of StSOBIR1 were suppressed by high temperature (32°C). StSOBIR1 positively regulates plant responses to high temperature stress, including the accumulation of sucrose, proline and chlorophylls. Moreover, at high temperature, both the StSOBIR1-knock down and overexpression plants exhibited similar JA signaling and herbivore resistance to wild-type plants. Transcriptome analysis revealed that high temperature interferes with StSOBIR1-mediated defensive responses to herbivory by disrupting herbivory-associated gene co-expression networks and reprioritizing its functions. Taken together, these results show that StSOBIR1-mediated fine-tune plant responses to herbivory and high temperature, while under combined stresses, its negative regulatory function over herbivore defense is lost.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70158\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70158","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
SOBIR1 Links Potato Responses to Potato Tuber Moth Attack and High Temperature Stress.
Herbivory and high temperature stress affect plant performance and frequently co-occur under natural conditions. The molecular mechanisms by which plants coordinate responses to these two stresses deserve more attention. Here, we explored how StSOBIR1, a leucine-rich repeat receptor-like kinase gene, modulates plant responses to herbivory and high temperature stress using genetic, molecular, biological, and chemical analysis approaches. StSOBIR1 encodes a plasma membrane-localized protein and its expression is rapidly induced upon herbivore attack. StSOBIR1 negatively regulates jasmonic acid (JA) signaling and JA-mediated defenses, thereby hindering herbivore resistance to potato tuber moth (Phthorimaea operculella) at a normal temperature (22°C). In contrast, the transcripts of StSOBIR1 were suppressed by high temperature (32°C). StSOBIR1 positively regulates plant responses to high temperature stress, including the accumulation of sucrose, proline and chlorophylls. Moreover, at high temperature, both the StSOBIR1-knock down and overexpression plants exhibited similar JA signaling and herbivore resistance to wild-type plants. Transcriptome analysis revealed that high temperature interferes with StSOBIR1-mediated defensive responses to herbivory by disrupting herbivory-associated gene co-expression networks and reprioritizing its functions. Taken together, these results show that StSOBIR1-mediated fine-tune plant responses to herbivory and high temperature, while under combined stresses, its negative regulatory function over herbivore defense is lost.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.